NeurIPS 2024 Workshop on Adaptive Foundation Models

Accepted Papers


Poster Schedule

Paper IDs 1-75 will be presented in the morning poster session, and paper IDs 76-157 will be presented in the afternoon poster session.

Orals

Authors Title
Fabian Paischer, Lukas Hauzenberger, Thomas Schmied, Benedikt Alkin, Marc Peter Deisenroth, Sepp Hochreiter One Initialization to Rule them All: Fine-tuning via Explained Variance Adaptation
Joel Jang, Seungone Kim, Bill Yuchen Lin, Yizhong Wang, Jack Hessel, Luke Zettlemoyer, Hannaneh Hajishirzi, Yejin Choi, Prithviraj Ammanabrolu Personalized Soups: Personalized Large Language Model Alignment via Post-hoc Parameter Merging
Jennifer Hsia, Afreen Shaikh, Zhiruo Wang, Graham Neubig RAGGED: Towards Informed Design of Retrieval Augmented Generation Systems
Yue Wu, Zhiqing Sun, Huizhuo Yuan, Kaixuan Ji, Yiming Yang, Quanquan Gu Self-Play Preference Optimization for Language Model Alignment
Zhepei Wei, Wei-Lin Chen, Xinyu Zhu, Yu Meng Fast and Accurate Language Model Decoding via Parallel Token Processing
Tong Chen, Hao Fang, Patrick Xia, Xiaodong Liu, Benjamin Van Durme, Luke Zettlemoyer, Jianfeng Gao, Hao Cheng Generative Adapter: Contextualizing Language Models in Parameters with A Single Forward Pass
Hui Dai, Ryan Teehan, Mengye Ren Are LLMs Prescient? A Continuous Evaluation using Daily News as the Oracle
Wentse Chen, Jiayu Chen, Fahim Tajwar, Hao Zhu, Xintong Duan, Russ Salakhutdinov, Jeff Schneider Fine-tuning LLM Agents with Retrospective In-Context Online Learning

Posters

Authors Title
Yangfan He, Sida Li, Jianhui Wang Prompt Learning Based Adaptor for Enhanced Video Editing with Pretrained Text-to-Image Diffusion Models
Daiwei Chen, Yi Chen, Aniket Rege, Ramya Korlakai Vinayak PAL: Pluralistic Alignment Framework for Learning from Heterogeneous Preferences
Brandon Trabucco, Max A Gurinas, Kyle Doherty, Russ Salakhutdinov Understanding Visual Concepts Across Models
Shanghaoran Quan Automatically Generating Custom Context-Driven SFT Data for LLMs with Multi-Granularity
Sajad Mousavi, Desik Rengarajan, Ashwin Ramesh Babu, Sahand Ghorbanpour, Vineet Gundecha, Avisek Naug, Soumyendu Sarkar Informed Tree of Thought: Cost-efficient Problem Solving with Large Language Models
Gaurav Verma, Rachneet Kaur, Nishan Srishankar, Zhen Zeng, Tucker Balch, Manuela Veloso AdaptAgent: Adapting Multimodal Web Agents with Few-Shot Learning from Human Demonstrations
Sazan Mahbub, Caleb Ellington, Sina Alinejad, Kevin Wen, Yingtao Luo, Ben Lengerich, Eric P. Xing From One to Zero: RAG-IM Adapts Language Models for Interpretable Zero-Shot Clinical Predictions
Yangfan He, Yinghui Xia, Jinfeng Wei, TIANYU SHI, Yang Jingsong PM-Jewelry: Personalized Multimodal Adaptation for Virtual Jewelry Try-On with Latent Diffusion
Shuvendu Roy, Ali Etemad Leveraging Self Weak-supervision for Improved VLM Performance
Sungmin Cha, Sungjun Cho, Dasol Hwang, Moontae Lee Towards Robust and Cost-Efficient Knowledge Unlearning for Large Language Models
Yimin Tang, Yurong Xu, Ning Yan, Masood S. Mortazavi Enhancing Long Context Performance in LLMs Through Inner Loop Query Mechanism
João Abrantes, Robert Tjarko Lange, Yujin Tang Improving Model Merging with Natural Niches
So Kuroki, Taishi Nakamura, Takuya Akiba, Yujin Tang Agent Skill Acquisition for LLMs via CycleQD
Asfandyar Azhar, Shaurjya Mandal, Nidhish Shah Towards Conversational AI for Spina Bifida Care
Changdae Oh, Yixuan Li, Kyungwoo Song, Sangdoo Yun, Dongyoon Han Adapting Foundation Models via Training-free Dynamic Weight Interpolation
Jiajun Chai, Sicheng Li, Yuqian Fu, Dongbin Zhao, Yuanheng Zhu Empowering LLM Agents with Zero-Shot Optimal Decision-Making through Q-learning
Hayun Lee, Kiseong Hong, Hwanhee Lee, Sungho Suh, Eunwoo Kim Dynamically Managing a Prompt Pool via Self-Enhancement in Continual Learning
Je-Seok Ham, Jia Huang, Peng Jiang, Jinyoung Moon, Yongjin Kwon, Srikanth Saripalli, Changick Kim OmniPredict: GPT-4o Enhanced Multi-modal Pedestrian Crossing Intention Prediction
Danyang Wang, Lingsong Zhang Ensemble-based Offline Reinforcement Learning with Adaptive Behavior Cloning
Bowen Zhao, Leo Parker Dirac, Paulina Varshavskaya Can Vision Language Models Learn from Visual Demonstrations of Ambiguous Spatial Reasoning?
Soeun Lee, Si-Woo Kim, Taewhan Kim, Dong-Jin Kim IFCap: Image-like Retrieval and Frequency-based Entity Filtering for Zero-shot Captioning
Tobias Strangmann, Lennart Purucker, Jörg K.H. Franke, Ivo Rapant, Fabio Ferreira, Frank Hutter Transfer Learning for Finetuning Large Language Models
Ruoyu Wang, Xiang Li, Tengjiao Sun, Yangfan He, TIANYU SHI, yitingxie Uniform Text-Motion Generation and Editing via Diffusion Model
Darian Marlis Rodriguez Vasquez, Afroditi Papadaki Generating Diverse Negations from Affirmative Sentences
M. Mehdi Mojarradi, Lingyi Yang, Robert McCraith, Adam Mahdi Improving In-Context Learning with Small Language Model Ensembles
Ilya Zisman, Alexander Nikulin, Andrei Polubarov, Lyubaykin Nikita, Vladislav Kurenkov N-Gram Induction Heads for In-Context RL: Improving Stability and Reducing Data Needs
Alexander Nikulin, Ilya Zisman, Alexey Zemtsov, Vladislav Kurenkov XLand-100B: A Large-Scale Multi-Task Dataset for In-Context Reinforcement Learning
Zhili Feng, Tanya Marwah, Nicolo Fusi, David Alvarez-Melis, Lester Mackey Adapting Language Models via Token Translation
Minju Seo, Jinheon Baek, James Thorne, Sung Ju Hwang Retrieval-Augmented Data Augmentation for Low-Resource Domain Tasks
Shengran Hu, Cong Lu, Jeff Clune Automated Design of Agentic Systems
Taewhan Kim, Soeun Lee, Si-Woo Kim, Dong-Jin Kim ViPCap: Retrieval Text-based Visual Prompts for Lightweight Image Captioning
Yu Yang, Pan Xu Pre-trained Language Models Improve the Few-shot Prompt Ability of Decision Transformer
Jonas Hübotter, Sascha Bongni, Ido Hakimi, Andreas Krause Efficiently Learning at Test-Time: Active Fine-Tuning of LLMs
Kamalkumar Rathinasamy, Balaji A J, Ankush Kumar, Gagan Gayari, Harshini K, Rajab Ali Mondal, Sreenivasa Raghavan K S, Swayam Singh, Mohammed Rafee Tarafdar Narrow Transformer: Mono-lingual Code SLM for Desktop
Qian Yang, Weixiang Yan, Aishwarya Agrawal Enhancing Multi-Agent Multi-Modal Collaboration with Fine-Grained Reward Modeling
Gonzalo Martin Garcia, Karim Abou Zeid, Christian Schmidt, Daan de Geus, Alexander Hermans, Bastian Leibe Efficient Fine-Tuning of Image-Conditional Diffusion Models for Depth and Surface Normal Estimation
Reyhane Askari-Hemmat, Mohammad Pezeshki, Pietro Astolfi, Melissa Hall, Florian Bordes, Jakob Verbeek, Michal Drozdzal, Adriana Romero-Soriano Deliberate Practice with Synthetic Data
Ognjen Rudovic, Pranay Dighe, Yi Su, Vineet Garg, Sameer Dharur, Xiaochuan Niu, Ahmed Hussen Abdelaziz, Saurabh Adya, Ahmed Tewfik Device-Directed Speech Detection for Follow-up Conversations Using Large Language Models
Nikolas Gritsch, Qizhen Zhang, Acyr Locatelli, Sara Hooker, Ahmet Üstün Nexus: Specialization meets Adaptability for Efficiently Training Mixture of Experts
Yingyu Liang, Zhenmei Shi, Zhao Song, Yufa Zhou Tensor Attention Training: Provably Efficient Learning of Higher-order Transformers
Manish Bhattarai, Minh N. Vu, Javier E. Santos, Ismael Boureima, Daniel O'Malley Enhancing Cross-Language Code Translation via Task-Specific Embedding Alignment in Retrieval-Augmented Generation
Ryan King, Gang Li, Bobak J Mortazavi, Tianbao Yang Memory Efficient Continual Learning with CLIP Models
Peng Xia, Kangyu Zhu, Haoran Li, Tianze Wang, Weijia Shi, Linjun Zhang, James Zou, Huaxiu Yao MMed-RAG: Versatile Multimodal RAG System for Medical Vision Language Models
Peng Xia, Siwei Han, Shi Qiu, Yiyang Zhou, Zhaoyang Wang, Wenhao Zheng, Zhaorun Chen, Chenhang Cui, Mingyu Ding, Linjie Li, Lijuan Wang, Huaxiu Yao MMIE: Massive Multimodal Interleaved Comprehension Benchmark for Large Vision-Language Models
Guowei Xu, Mert Yuksekgonul, Carlos Guestrin, James Zou metaTextGrad: Learning to learn with language models as optimizers
Sahar Rajabi, Sirisha Rambhatla Enhancing Fine-Tuning Efficiency of LLMs Through Gradient Subspace Tracking
Rujikorn Charakorn, Edoardo Cetin, Yujin Tang, Robert Tjarko Lange Instant Transformer Adaption via HyperLoRA
Yi Chen, Muyoung Son, Chuanbo Hua, Joo-Young Kim AoP-SAM: Automation of Prompts for Efficient Segmentation
Eric Nuertey Coleman, Luigi Quarantiello, Julio Hurtado, Vincenzo Lomonaco Adaptive LoRA Merging for Efficient Domain Incremental Learning
Wenhao Zheng, Yixiao Chen, Weitong Zhang, Souvik Kundu, Yun Li, Zhengzhong Liu, Eric P. Xing, Hongyi Wang, Huaxiu Yao CITER: Collaborative Inference for Efficient Large Language Model Decoding with Token-Level Routing
Vaibhav Singh, Rahaf Aljundi, Eugene Belilovsky Controlling Forgetting with Test-Time Data in Continual Learning
Quinn Leng, Jacob Portes, Sam Havens, Matei Zaharia, Michael Carbin Long Context RAG Performance of Large Language Models
Zhenyu Zhu, Yongtao Wu, Quanquan Gu, Volkan Cevher Imbalance-Regularized LoRA: A Plug-and-Play Method for Improving Fine-Tuning of Foundation Models
Qi Sun, Edoardo Cetin, Yujin Tang $\text{Transformer}^2$: Self-adaptive LLMs
Oscar Key, Luka Ribar, Alberto Cattaneo, Luke Hudlass-Galley, Douglas Orr Approximate Top-k for Increased Parallelism
Ashutosh Ranjan, Vivek Srivastava, Shirish Karande Pick Your Influencer: Being Selective is Good for Personalization
Daniel Gallo Fernández, Răzvan-Andrei Matișan, Alejandro Monroy Muñoz, Ana Maria Vasilcoiu, Janusz Partyka, Tin Hadži Veljković, Metod Jazbec DuoDiff: Accelerating Diffusion Models with a Dual-Backbone Approach
Sam Houliston, Alizée Pace, Alexander Immer, Gunnar Ratsch Uncertainty-Penalized Direct Preference Optimization
Zhuoshi Pan, Qianhui Wu, Huiqiang Jiang, Xufang Luo, Hao Cheng, Dongsheng Li, Yuqing Yang, Chin-Yew Lin, H. Vicky Zhao, Lili Qiu, Jianfeng Gao SeCom: On Memory Construction and Retrieval for Personalized Conversational Agents
Hyoseo Kim, Dongyoon Han, Junsuk Choe NegMerge: Consensual Weight Negation for Strong Machine Unlearning
Zheng Xiong, Siddhant Sharma, Kang Li, Risto Vuorio, Shimon Whiteson Efficient Domain Adaptation of Robotic Foundation Models via Hypernetwork-Generated LoRA
Felix Stahlberg, Jared Lichtarge, Shankar Kumar Dynamic Subset Tuning: Expanding the Operational Range of Parameter-Efficient Training for Large Language Models
Xinyu Yang, Tianqi Chen, Beidi Chen APE: Faster and Longer Context-Augmented Generation via Adaptive Parallel Encoding
Chanwoo Kim, Jeyoon Yeom, JOOWANG KIM, Suho Kang, Kyungwoo Song Efficient Transfer Learning driven by Layer-wise Features Aggregation
Kunal Singh, Mukund Khanna, Pradeep Moturi Effective Text-to-Image Alignment with Quality Aware Pair Ranking
Mingzhu Shen, Pengtao Chen, Peng Ye, Guoxuan Xia, Tao Chen, Christos-Savvas Bouganis, Yiren Zhao MD-DiT: Step-aware Mixture-of-Depths for Efficient Diffusion Transformers
Xiangyu Chen, Ye Wang, Matthew Brand, Pu Perry Wang, Jing Liu, Toshiaki Koike-Akino Slaying the HyDRA: Parameter-Efficient Hyper Networks with Low-Displacement Rank Adaptation
Ziheng Cheng, Zhong Li, Jiang Bian Data-Efficient Training by Evolved Sampling
Quanting Xie, So Yeon Min, Tianyi Zhang, Kedi Xu, Aarav Bajaj, Russ Salakhutdinov, Matthew Johnson-Roberson, Yonatan Bisk Embodied-RAG: General Non-parametric Embodied Memory for Retrieval and Generation
Zhongmou He, Jing Zhu, Shengyi Qian, Joyce Chai, Danai Koutra LinkGPT: Teaching Large Language Models To Predict Missing Links
Jianan Zhao, Mikhail Galkin, Hesham Mostafa, Michael M. Bronstein, Zhaocheng Zhu, Jian Tang Fully-inductive Node Classification on Arbitrary Graphs
Mudit Verma, Siddhant Bhambri, Subbarao Kambhampati Do Think Tags Really Help LLMs Plan? A Critical Evaluation of ReAct-Style Prompting
Ryan Zhang, Herbert Woisetschläger, Shiqiang Wang, Hans Arno Jacobsen MESS+: Energy-Optimal Inferencing in Language Model Zoos with Service Level Guarantees
Malyaban Bal, Brian Matejek, Susmit Jha, Adam D. Cobb SpikingVTG: Saliency Feedback Gating Enabled Spiking Video Temporal Grounding
Gang Li, Wendi Yu, Yao Yao, Wei Tong, Yingbin Liang, Qihang Lin, Tianbao Yang Model Developmental Safety: A Safety-Centric Method and Applications in Vision-Language Models
So Yeon Min, Xavier Puig, Devendra Singh Chaplot, Tsung-Yen Yang, Akshara Rai, Priyam Parashar, Russ Salakhutdinov, Yonatan Bisk, Roozbeh Mottaghi Situated Instruction Following Under Ambiguous Human Intent
Yizhu Jiao, Xuchao Zhang, Zhaoyang Wang, Yubo Ma, Zhun Deng, Rujia Wang, Chetan Bansal, Saravan Rajmohan, Jiawei Han, Huaxiu Yao Synergistic Weak-Strong Collaboration by Aligning Preferences
Xinle Cheng, Zhuoming Chen, Zhihao Jia CAT Pruning: Cluster-Aware Token Pruning For Text-to-Image Diffusion Models
Oscar Mañas, Pierluca D'Oro, Koustuv Sinha, Adriana Romero-Soriano, Michal Drozdzal, Aishwarya Agrawal Controlling Multimodal LLMs via Reward-guided Decoding
Liangyu Wang, Jie Ren, Hang Xu, Junxiao Wang, David E. Keyes, Di Wang ZO-Offloading: Fine-Tuning LLMs with 100 Billion Parameters on a Single GPU
Yuxi Xie, Anirudh Goyal, Xiaobao Wu, Xunjian Yin, Xiao Xu, Min-Yen Kan, Liangming Pan, William Yang Wang COrAL: Order-Agnostic Language Modeling for Efficient Iterative Refinement
Wan-Cyuan Fan, Yen-Chun Chen, Mengchen Liu, Lu Yuan, Leonid Sigal On Pre-training of Multimodal Language Models Customized for Chart Understanding
Steven Kolawole, Keshav Santhanam, Virginia Smith, Pratiksha Thaker Extracting Parallelism from Large Language Model Queries
Le Zhang, Qian Yang, Aishwarya Agrawal Visual Language Alignment Tuning
Christoph Dann, Yishay Mansour, Teodor Vanislavov Marinov, Mehryar Mohri Domain Adaptation for Robust Model Routing
Zhuoming Chen, Ranajoy Sadhukhan, Zihao Ye, Yang Zhou, Jianyu Zhang, Niklas Nolte, Yuandong Tian, Matthijs Douze, Leon Bottou, Zhihao Jia, Beidi Chen MagicPIG: LSH Sampling for Efficient LLM Generation
Liangyu Wang, Junxiao Wang, Jie Ren, Zihang Xiang, David E. Keyes, Di Wang FlashDP: Memory-Efficient and High-Throughput DP-SGD Training for Large Language Models
Xinyu Li, Ruiyang Zhou, Zachary Chase Lipton, Liu Leqi Personalized Language Modeling from Personalized Human Feedback
Jianan Zhao, Le Zhuo, Yikang Shen, Meng Qu, Kai Liu, Michael M. Bronstein, Zhaocheng Zhu, Jian Tang GraphText: Graph Reasoning in Text Space
Dhawal Gupta, Christoph Dann, Alekh Agarwal P3O: Pessimistic Preference-based Policy Optimization for Robust Alignment from Preferences
Omkar Dige, John Willes, D. B. Emerson Evaluating RAG System Performance: The Impact of Knowledge Cut-off and Fine-Tuning
Jiafan He, Huizhuo Yuan, Quanquan Gu Accelerated Preference Optimization for Large Language Model Alignment
Zhepei Wei, Wei-Lin Chen, Yu Meng InstructRAG: Instructing Retrieval Augmented Generation via Self-Synthesized Rationales
Di Wu, Hongwei Wang, Wenhao Yu, Yuwei Zhang, Kai-Wei Chang, Dong Yu LongMemEval: Benchmarking Chat Assistants on Long-Term Interactive Memory
Neeratyoy Mallik, Maciej Janowski, Johannes Hog, Herilalaina Rakotoarison, Aaron Klein, Josif Grabocka, Frank Hutter Warmstarting for Scaling Language Models
Xiujun Li, Yujie Lu, William Yang Wang, Yejin Choi Text as Images: Can Multimodal Large Language Models Follow Printed Instructions in Pixels?
Aniket Rajiv Didolkar, Andrii Zadaianchuk, Rabiul Awal, Maximilian Seitzer, Efstratios Gavves, Aishwarya Agrawal CTRL-O: Language-Controllable Object-Centric Visual Representation Learning
Artur Parkhimchyk, Amirreza Naziri, Laleh Seyyed-Kalantari Exploring Visual Prompt Tuning for Demographic Adaptation in Foundation Models for Medical Imaging
Yuji Byun, Jaeho Lee Towards Federated Low-Rank Adaptation with Rank Heterogeneity
Edouardo Honig, Andrew Lizarraga, Zijun Frank Zhang, Ying Nian Wu Better Prompt Compression Without Multi-Layer Perceptrons
Zahra Rahimi Afzal, Tara Esmaeilbeig, Mojtaba Soltanalian, Mesrob I Ohannessian Can the Spectrum of the Neural Tangent Kernel Anticipate Fine-Tuning Performance?
Hui Yuan, Yifan Zeng, Yue Wu, Huazheng Wang, Mengdi Wang, Liu Leqi A Common Pitfall of Margin-based Language Model Alignment: Gradient Entanglement
Song Jiang, Da JU, Andrew Cohen, Sasha Mitts, Aaron Foss, Justine T Kao, Xian Li, Yuandong Tian Towards Full Delegation: Designing Ideal Agentic Behaviors for Travel Planning
Bo Wen, Xin Zhang Enhancing Reasoning to Adapt Large Language Models for Domain-Specific Applications
Megh Thakkar, Yash More, Quentin Fournier, Matthew Riemer, Pin-Yu Chen, Amal Zouaq, Payel Das, Sarath Chandar Combining Domain and Alignment Vectors to Achieve Better Knowledge-Safety Trade-offs in LLMs
Allison Lau, Younwoo Choi, Vahid Balazadeh, Keertana Chidambaram, Vasilis Syrgkanis, Rahul Krishnan Personalized Adaptation via In-Context Preference Learning
Muhammad Arbab Arshad, Talukder Zaki Jubery, Asheesh K Singh, ARTI SINGH, Chinmay Hegde, Baskar Ganapathysubramanian, Aditya Balu, Adarsh Krishnamurthy, Soumik Sarkar Assisted Few-Shot Learning for Vision-Language Models in Agricultural Stress Phenotype Identification
Kaustubh Sridhar, Souradeep Dutta, Dinesh Jayaraman, Insup Lee REGENT: A Retrieval-Augmented Generalist Agent That Can Act in-Context In New Environments
Hao Zhao, Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion Is In-Context Learning Sufficient for Instruction Following in LLMs?
Huisheng Wang, Zhuoshi Pan, Hangjing Zhang, Mingxiao Liu, Yiqing Lin, H. Vicky Zhao InvestAlign: Align LLMs with Investor Decision-Making under Herd Behavior
Tianyun Yang, Ziniu Li, Juan Cao, Chang Xu Mitigating Hallucination in Large Vision-Language Models via Modular Attribution and Intervention
Megh Thakkar, Léo Boisvert, Thibault Le Sellier de Chezelles, Alexandre Piché, Maxime Gasse, Alexandre Lacoste, Massimo Caccia AgentMerge: Enhancing Generalization in Fine-Tuned LLM Agents
Sara Kangaslahti, David Alvarez-Melis Continuous Language Model Interpolation for Dynamic and Controllable Text Generation
Himanshu Thakur, Eshani Agrawal, Smruthi Mukund Personas within Parameters: Fine-Tuning Small Language Models with Low-Rank Adapters to Mimic User Behaviors
Nikki Lijing Kuang, Wei Sun, Scott McFaddin, Yian Ma, Markus Ettl Towards Personalized Language Models via Inference-time Human Preference Optimization
Chang Liu, Saad Hossain, C Thomas, Kwei-Herng Lai, Raviteja Vemulapalli, Sirisha Rambhatla, Alexander Wong LangDA: Language-guided Domain Adaptive Semantic Segmentation
Yang Zhou, Zhuoming Chen, Zhaozhuo Xu, Xi Victoria Lin, Beidi Chen Sirius: Contextual Sparsity with Correction for Efficient LLM
Emiliyan Gospodinov, Vaisakh Shaj, Philipp Becker, Stefan Geyer, Gerhard Neumann Adaptive World Models: Learning Behaviors by Latent Imagination Under Non-Stationarity
Brian K Chen, Tianyang Hu, Hui Jin, Hwee Kuan Lee, Kenji Kawaguchi In-Context Learning behaves as a greedy layer-wise gradient descent algorithm
Hari Chandana Kuchibhotla, Abbavaram Gowtham Reddy, Sai Srinivas Kancheti, Vineeth N. Balasubramanian Fine-Grained Visual Recognition in the Age of Multimodal LLMs

If you have any questions, please reach out to: neurips2024-adaptive-foundation@googlegroups.com