

Secom: On Memory Construction and Retrieval for Personalized Conversational Agents

Zhuoshi Pan, Qianhui Wu, Huiqiang Jiang, Xufang Luo, Hao Cheng, Dongsheng Li, Yuqing Yang, Chin-Yew Lin, H. Vicky Zhao, Lili Qiu, Jianfeng Gao

Microsoft Corporation

Motivation & Methodology

- * Background: Long-term, open-domain conversations over multiple sessions conversations challenges the LLM-powered conversational agent[1,2], as they require the system to retain past events and user preferences to deliver coherent and personalized responses.
- ✤ Findings:
 - * We first systematically investigate the impact of memory granularities on retrieval augmented conversational agents, and find that commonly used turn-level[3], session-level[4], and summarization-based methods[2,5] all exhibit limitations.

Figure: Illustration of retrieval augmented conversation agent with different memory granularities. Ours (segment-level memory) can better capture topically coherent unit.

- \bigcirc balancing 1) including relevant information and 2) excluding irrelevant content.
- * Redundancy in long-term conversation acts as noise, hindering accurate memory retrieval[6].

Redundancy in long-term conversation **acts as noise** for retrieval systems and prompt compression helps.

Prompt compression method like LLMLingua-2 removes such redundancy, **increasing the similarity** between the query and relevant segments and decreasing the similarity with irrelevant ones.

Methodology:

* Introducing a conversation segmentation model that partitions long-term conversations into topically coherent segments, constructing the memory bank at the segment level: $\mathcal{H} = \{c_i\}_{i=1}^C \to \mathcal{M} = \{m_i\}_{i=1}^M$

90%

100%

0.293

0.290

0.288 tr

0.285 III

0

0.283

0.280

.278

- * Removing redundancy from memory units prior to retrieval by leveraging prompt compression method[7]: $\{m_n \in \mathcal{M}\}_{n=1}^N \leftarrow f_R(u^*, f_{Comp}(\mathcal{M}), N)$.
- Integrating these two technologies into a unified system, SeCom, towards better personalized conversational agents.

Experiments & Discussion

Overall Effectiveness: SECOM, which constructs memory bank at segment level, outperforms SOTA baseline approaches. Moreover, more light-weight segmentation models remain effective.

			OA Perf	ormance			Context Length		
Methods	GPT/Score	DIEU	Pougel	Pouge?	Pougel	BEDTScore	# Turns	# Tokens	
	011450016	BLEU	Kouger	Kouge2	RougeL	BERIScole		# TOKENS	
LOCOMO									
Zero History	24.86	1.94	17.36	3.72	13.24	85.83	0.00	0	
Full History	54.15	6.26	27.20	12.07	22.39	88.06	210.34	13,330	
Turn-Level (MPNet)	57.99	6.07	26.61	11.38	21.60	88.01	54.77	3,288	
Session-Level (MPNet)	51.18	5.22	24.23	9.33	19.51	87.45	53.88	3,471	
SumMem	53.87	2.87	20.71	6.66	16.25	86.88	-	4,108	
RecurSum	56.25	2.22	20.04	8.36	16.25	86.47	-	400	
ConditionMem	65.92	3.41	22.28	7.86	17.54	87.23	-	3,563	
MemoChat	65.10	6.76	28.54	12.93	23.65	88.13	-	1,159	
SECOM (RoBERTa-Seg)	61.84	6.41	27.51	12.27	23.06	88.08	56.32	3,767	
SECOM (Mistral-7B-Seg)	66.37	6.95	28.86	13.21	23.96	88.27	55.80	3,720	
SECOM (GPT-4-Seg)	69.33	7.19	29.58	13.74	24.38	88.60	55.51	3,716	
		1	Long-MT-B	ench+					
Zero History	49.73	4.38	18.69	6.98	13.94	84.22	0.00	0	
Full History	63.85	7.51	26.54	12.87	20.76	85.90	65.45	19,287	
Turn-Level (MPNet)	84.91	12.09	34.31	19.08	27.82	86.49	3.00	909	
Session-Level (MPNet)	73.38	8.89	29.34	14.30	22.79	86.61	13.43	3,680	
SumMem	63.42	7.84	25.48	10.61	18.66	85.70	-	1,651	
RecurSum	62.96	7.17	22.53	9.42	16.97	84.90	-	567	
ConditionMem	63.55	7.82	26.18	11.40	19.56	86.10	-	1,085	
MemoChat	85.14	12.66	33.84	19.01	26.87	87.21	-	1,615	
SECOM (RoBERTa-Seg)	81.52	11.27	32.66	16.23	25.51	86.63	2.96	841	
SECOM (Mistral-7B-Seg)	86.32	12.41	34.37	19.01	26.94	87.43	2.85	834	
SECOM (GPT-4-Seg)	88.81	13.80	34.63	19.21	27.64	87.72	2.77	820	

[1] Maharana et al., Evaluating very long-term conversational memory of Ilm agents. ACL 2024. [2] Chen et al., Compress to impress: Unleashing the potential of compressive memory in

Effectiveness of the Conversation Segmentation Model: our segmentation model is well suited for unsupervised scenarios.

Methods	Dialseg711				SuperDialSeg			TIAGE				
	Pk↓	$WD{\downarrow}$	F1↑	Score↑	Pk↓	WD \downarrow	F1↑	Score↑	Pk↓	WD\downarrow $\!$	F1↑	Score↑
Unsupervised Baselines												
BayesSeg	0.306	0.350	0.556	0.614	0.433	0.593	0.438	0.463	0.486	0.571	0.366	0.419
TextTiling GraphSeg	0.470	0.493 0.442	0.245 0.392	$0.382 \\ 0.483$	0.441	0.453 0.454	0.388 0.249	$\frac{0.471}{0.398}$	0.469	0.488 0.515	0.204 0.238	0.363 0.366
TextTiling+Glove	0.399	0.438	0.436	0.509	0.519	0.524	0.353	0.416	0.486	0.511	0.236	0.369
TextTiling+[CLS]	0.419	0.473	0.351	0.453	0.493	0.523	0.277	0.385	0.521	0.556	0.218	0.340
TextTiling+NSP	0.347	0.360	0.347	0.497	0.512	0.521	0.208	0.346	0.425	0.439	0.285	0.426
GreedySeg	0.381	0.410	0.445	0.525	0.490	0.494	0.365	0.437	0.490	0.506	0.181	0.341
CSM	0.278	0.302	0.610	0.660	0.462	0.467	0.381	0.458	0.400	0.420	0.427	<u>0.509</u>

Transfer-learning Based Baselines

Training Set	Train on TIAGE	Train on TIAGE	Train on SuperDialSeg							
TextSeg _{dial}	0.476 0.491 0.182 0.	849 0.552 0.570 0.199 0.319	0 0.489 0.508 0.266 0.384							
BERT	0.441 0.411 0.005 0.	0.511 0.513 0.043 0.266	0.492 0.526 0.226 0.359							
RoBERTa	<u>0.197</u> <u>0.210</u> <u>0.650</u> <u>0.</u>	$\frac{123}{23} 0.434 \ \underline{0.436} \ 0.276 \ 0.420$	0.401 0.418 0.373 0.482							
LLM-based Segmentation Model (Zero-Shot)										

 $| 0.093 \ 0.103 \ 0.888 \ 0.895 \ | 0.277 \ 0.289 \ 0.758 \ 0.738 \ | 0.363 \ 0.401 \ 0.596 \ 0.607$ Ours

* Ablation on Compression Denoising: removing compression-based denoising mechanism leads to performance drop, particularly on the long-conversation benchmark LOCOMO.

Methods		LOC	ОМО		Long-MT-Bench+				
	GPT4Score	BLEU	Rouge2	BERTScore	GPT4Score	BLEU	Rouge2	BERTScore	
SECOM	69.33	7.19	13.74	88.60	88.81	13.80	19.21	87.72	
– Denoise	59.87	6.49	12.11	88.16	87.51	12.94	18.73	87.44	

[4] Wang et al., Recursively summarizing enables long-term dialogue memory in large language models. 2024. [5] Xu et al., Beyond goldfish memory: Long-term open-domain conversation. ACL 2022.

[6] Ma et al., Simple and effective unsupervised redundancy elimination to compress

[3]	Yuan et a	al., Evol	lving l	arge	language model	assistant with	long-term	conditional	memory. 2024.
		,	<u> </u>	9					

