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Motivation & Methodology

“* Background: Long-term, open-domain conversations over multiple sessions conversations challenges the LLM-powered conversational agent[1,2],

as they require the system to retain past event

“* Findings:

s and user preferences to deliver coherent and personalized responses.

“* We first systematically investigate the impact of memory granularities on retrieval augmented conversational agents, and find that

commonly used turn-level[3], session-level[4], and summarization-based methods[2,5] all exhibit limitations.
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The prosecutor’s fallacy is a logical fallacy when the ¢ (&)
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: ‘uﬁ What about base rate fallacy? |

I D I I NN NN N N R R O O O O

- Segment-2[0491 @ . _____.

lThu base rate fallacy is a common cognitive error when ... ? I?l

l.,ﬁ What consequences will it cause? ]

making in fields like medicine, law ..

‘nﬁ Reason for this fallacy? ]

The base rate fallacy can arise from several cognitive I?l
biases and reasoning tendencies: ...

1
1
1
1
|
I
| 3 p
| [Thu base rate fallacy can lead to poor decision- ]7I'E|
|
|
|
|
|
|
|
|
|

 Segment-3[0.41] ________________._

o mm mm mm mm mm mm mm mm mm mm mm mm mm mm wm wm wm wm wm mm mm

A A O A I I O O O O O O O BN O B B B

I
! l.._‘i List some reasons of the World War Il.
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Here are some key reasons for World War ll:
1. Expansionist Policies ...

]

l..‘i Summarize these reasons into a short conclusion.
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Figure: lllustration of retrieval augmented conversation agent with different memory
granularities. Ours (segment-level memory) can better capture topically coherent unit.
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Figure: memory granularity impacts (1) retrieval accuracy
and (2) response quality.

., Turn-level memory is too fine-grained, leading to
@ fragmentary and incomplete context
and misses essential interaction turns.

Session-level memory is too coarse-grained, containing

people ignore general prevalence in _,@\_e too much irrelevant information,

which distracts both the retrieval module and the LLM.

Finally, we touched on the causes of @ Summary-based methods suffer from information

© Joss that occurs during summarization.

Our SeCom can better capture topically coherent units,

balancing 1) including relevant information and
2) excluding irrelevant content.

“* Redundancy in long-term conversation acts as noise, hindering accurate memory retrieval[6].
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“* Methodology:
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decreasing the similarity with irrelevant ones.

% Introducing a conversation segmentation model that partitions long-term conversations into topically coherent segments, constructing the

memory bank at the segment level:

H={e}il - M={m;}}L,

» Removing redundancy from memory units prior to retrieval by leveraging prompt compression method[7]: {m. € M};_, < fr(u”, foomp(M), N).

< Integrating these two technologies into a unified system, SeCom, towards better personalized conversational agents.

¢ Overall Effectiveness: SECOM, which constructs memory bank at
segment level, outperforms SOTA baseline approaches. Moreover,
more light-weight segmentation models remain effective.

Experiments & Discussion

s Effectiveness of the Conversation Segmentation Model: our
segmentation model is well suited for unsupervised scenarios.

Methods | Dialseg711 SuperDialSeg TIAGE
| Pkl WDJ] FIt Scoref| Pk| WDJ| FIT ScoreT| Pk|] WD| FIT Scoret
Methods | QA Performance | Context Length Unsupervised Baselines
| GPT4Score  BLEU  Rougel  Rouge2 Rougel  BERTScore | #Turns  # Tokens BayesSeg 0.306 0.350 0.556 0.614 |0.433 0.593 0.438 0.463 |0.486 0.571 0.366 0.419
LOCOMO TextTiling 0.470 0.493 0.245 0.382 [0.441 0.453 0.388 0.471 [0.469 0.488 0.204 0.363
Zero History Y Y E———, i oy e 000 . GraphSeg 0412 0.442 0392 0.483 [0.450 0.454 0.249 0.398 |0.496 0.515 0.238 0.366
Full History 54.15 626 2720 1207 22.39 88.06 21034 13,330 TextTiling+Glove | 0.399 0.438 0.436 0.509 |0.519 0.524 0.353 0.416 |0.486 0.511 0.236 0.369
— TextTiling+[CLS] | 0.419 0.473 0.351 0.453 [0.493 0.523 0.277 0.385 |0.521 0.556 0.218 0.340
- 2
Turn-Level (MPRet 37.99 607 2661 1138 2160 8801 | 5477 3,288 TextTiling+NSP | 0.347 0360 0.347 0.497 |0.512 0.521 0.208 0.346 |0.425 0.439 0.285 0.426
Session-Level (MPNet) 51.18 522 2423 9.33 19.51 87.45 53.88 3,471 GreedySeg 0.381 0410 0.445 0.525 [0.490 0.494 0.365 0.437 |0.490 0.506 0.181 0.341
SumMen 5387 287 2071 666 16.25 26,88 ] 4108 CSM 0.278 0.302 0.610 0.660 |0.462 0.467 0.381 0.458 [0.400 0.420 0.427 0.509
RecurSum 56.25 2.22 20.04 8.36 16.25 86.47 - 400 Transfer-learning Based Baselines
ConditionMem 65.92 341 2228 7.86 17.54 87.23 . 3,563
MemoChat 65.10 6.76 28.54 12.03 23.65 R8.13 - 1.159 Training Set Train on TIAGE Train on TIAGE Train on SuperDialSeg
SECOM (RoBERTa-Seg) 61.84 641 2751 1227 23.06 88.08 56.32 3,767 TextSeg,,. ., 0.476 0.491 0.182 0.349 0.552 0.570 0.199 0.319 | 0.489 0.508 0.266 0.384
SECOM (Mistral-7B-Seg) 66.37 695 2886 1321 23.96 88.27 5580 3,720 BERT 0441 0.411 0.005 0.297 [0.511 0.513 0.043 0.266 [0.492 0.526 0.226 0.359
SECOM (GPT-4-Seg) 69.33 7.19 2958 1374  24.38 88.60 55.51 3,716 RoBERTa 0.197 0.210 0.650 0.723 |0.434 0.436 0.276 0.420 [0.401 0.418 0.373 0.482
Long-MT-Bench+ LLM-based Segmentation Model (Zero-Shot)
Zero History 49.73 4.38 18.69 6.98 13.94 84.22 0.00 0 Ours |0.093 0.103 0.888 0.895 |0.277 0.289 0.758 0.738 |0.363 0.401 0.596 0.607
Full History 63.85 751 2654 1287  20.76 85.90 65.45 19287
Turn-Level (MPNet) 8491 1209 3431 1908 2782 8649 | 300 909 <+ Ablation on Compression Denoising: removing compression-based
T g ' o« o . .
Session-Level (MPNet) 73.38 880 2934 1430  22.79 86.61 | 13.43 3,680 denOISIng mechanism leads to performance drop, partlcularly on
SumMem 63.42 784 2548  10.61 18.66 85.70 . 1,651 :
RecurSum 62.96 717 2253 942 1697 84.90 : 567 the long-conversation benchmark LOCOMO.
ConditionMem 63.55 782 2618  11.40 19.56 86.10 i 1,085
MemoChat 85.14 1266 3384  19.01 26.87 87.21 . 1,615 Methods | LOCOMO | Long-MT-Bench+
SECOM (RoBERTa-Seg) 81.52 11.27  32.66 16.23 25.51 86.63 2.96 841 | GPT4Score BLEU  Rouge2 BERTScore | GPT4Score BLEU Rouge2 BERTScore
SECOM (Mistral-7B-Seg) 86.32 12.41 34.37 19.01 26.94 87.43 2.85 834 SECOM 69.33 7.19 13.74 88.60 88.81 13.80 19.21 87.72
SECOM (GPT-4-Seg) 88.81 13.80 3463 1921  27.64 87.72 2.77 820 _ Denoise 59.87 649 1211 88.16 ‘ 87.51 1294  18.73 87.44
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