Is In-Context Learning Sufficient for Instruction Following in LLMs? Hao Zhao, Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion

Background

- 1. Zhou et al. (2023) propose **Superficial Alignment Hypothesis**, which suggests that a few high-quality examples are sufficient to teach pre-trained LLMs to follow natural human instructions.
- 2. A line of work (Zhao et al., 2024) shows that IFT with 1K examples outperforms IFT with full datasets.
- 3. IFT of pre-trained LLMs permanently modifies model parameters, which causes huge costs for diverse use cases.
- 4. Lin et al. (2024) proposed **URIAL**, a method using *three* in-context examples to align base LLMs, achieving non-trivial instruction following performance.
- 5. ICL allows LLMs to learn from examples without changing model weights and offers flexible model preferences for different applications.
- 6. In particular, ICL is a promising capability for *long-context* LLMs that can

Scaling up In-Context examples

Setups:

- Base models: Mistral-7B-v0.2 (32k) and Llama-3.1-8B (128k)

Strategies to select additional in-context examples:

- <u>Greedy search</u>: select examples that greedily maximize the MT-Bench score using GPT-4-Turbo as the judge.
- <u>Sampling from IFT datasets</u>: Instruct-SkillMix contains high-quality examples. **Results:**

- Improved in-context alignment by greedy search

Model	Mistral-	tral-7B-v0.2 Llama-3.1-		-3.1-8B
	MT-Bench (1st)	AlpacaEval 2.0	MT-Bench (1st)	AlpacaEval 2.0
URIAL (3 examples)	7.00	8.22	6.95	7.28
URIAL + greedy search (1 ex.)	7.52	7.53	7.61	8.61
URIAL + greedy search (2 ex.)	7.47	7.78	7.77	8.16
IIRIAI + oreedv search (3 ex)	7 43	8 55	7 81	8 1 9

URIAL v.s. Aligned LLMs

- Firstly, we conduct systematic comparison of URIAL to aligned models on MT-Bench across different base LLMs, including GPT-4-Base.
- We show that URIAL still significantly lags behind aligned models fine-tuned with more sophisticated approaches.

Model	1st-turn	2nd-turn	Average
Llama-2-7B + URIAL *	5.75	3.91	4.83
Llama-2-7B-Instruct	7.14	5.91	6.53
Llama-2-70B + URIAL *	7.61	6.61	7.11
Llama-2-70B-Instruct	7.37	7.03	7.20
Llama-3-8B + URIAL *	6.84	4.65	5.75
Llama-3-8B-Instruct	8.29	7.42	7.86
Llama-3-70B + URIAL *	7.71	5.09	6.40
Llama-3-70B-Instruct	8.96	8.51	8.74
Llama-3.1-8B + URIAL *	6.95	5.31	6.13
Llama-3.1-8B-Instruct	8.27	7.73	8.00
Mistral-7B-v0.1 + URIAL *	7.49	5.86	6.67
Mistral-7B-Instruct-v0.1	7.31	6.39	6.85
Mistral-7B-v0.2 + URIAL *	6.99	5.55	6.27
Mistral-7B-Instruct-v0.2	8.06	7.21	7.64
Mixtral-8x22B-v0.1-4bit + URIAL	8.28	7.14	7.71
Mixtral-8x22B-Instruct-v0.1-4bit	8.78	8.25	8.52
GPT-4-Base + URIAL	7.96	5.04	6.50
GPT-4 (March 2023) *	8.96	9.03	8.99

- Scaling up in-context examples

Decoding Parameters

• We find that proper decoding schemes enable base LLMs to achieve reasonable instruction-following performance on MT-Bench.

Conclusions:

- Many-shot ICL can improve instruction following performance but fails to close the gap with aligned LLMs.

- The data selection scheme via greedy search outperforms, with 1 to 3 additional examples, the many-shot approach with random samples.

ICL vs IFT for Instruction Following

Setups:

- Base models: Mistral-7B-v0.2 (32k) and Llama-3.1-8B (128k)
- Datasets: Instruct-SkillMix (high quality), Evol-Instruct (medium quality)
- Fair comparison of ICL and IFT in the low-data regime, ranging from 3 to 4K.

Results:

A closer look at URIAL components

• Increasing the number of in-context examples progressively improves the performance of the base LLM.

1.Zhou, Chunting, et al. "Lima: Less is more for alignment." Advances in Neural Information Processing Systems 36 (2024).

- 2.Zhao, Hao, et al. "Long Is More for Alignment: A Simple but Tough-to-Beat Baseline for Instruction Fine-Tuning." Forty*first International Conference on Machine Learning* (2024).
- 3.Lin, Bill Yuchen, et al. "The unlocking spell on base Ilms: Rethinking alignment via in-context learning." The Twelfth International Conference on Learning Representations (2023).

Conclusions:

- We show that ICL and IFT with the same number of examples are roughly equivalent for single-turn conversations in the low-data regime.
- IFT generalizes substantially better than ICL when more examples are present, especially for multi-turn conversations.