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Introduction

Given the pre-trained model fθ0 and the target dataset DT = {(xi, yi)}n
i=1 for

the downstream task, we look at fine-tuning as an NTK regression problem.

• In SGD, the update to parameters at step t is given by
θt+1 − θt = ηEx∼D

T
[∇θL(fθt

(x), y)]
= ηEx∼D

T
[∇θfθt

(x)∇fL (fθt
(x), y)] . (1)

• Using the first-order Taylor expansion
fθt+1 (x′) − fθt

(x′) ≈ 〈∇θfθt
(x′), θt+1 − θt〉

= ηEx∼D
T

[
∇θfθt

(x′)> · ∇θfθt
(x)∇fL (fθt

(x), y)
]

= ηEx∼D
T

[kt (x, x′)∇fL (fθt
(x), y)] . (2)

This indicates that the learning dynamics of SGD is equivalent to NTK regression when
the kernel is chosen to be the NTK, i.e., kt (x, x′) = ∇θfθt

(x′)> ∇θfθt
(x).

• We call the model linearized or in the lazy regime if kt (x, x′) ≈ k0 (x, x′).
• Looking at fine-tuning through the lens of Neural Tangent Kernel (NTK) regression:
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Figure 1. Fine-tuning in the lazy regime is close to kernel regression on the tangent space. fθ∗(x) is the
fine-tuned model obtained by empirical risk minimization. If fine-tuning remains in the linearized
regime, then after T steps of training fθ∗(x) ≈ fθ0(x) + 〈∇θfθ0(x), θT − θ0〉.

• θl → the parameters of layer l from the pretrained model.
• The NTK matrix is defined as [K]i,j =

∑L
l=1 ∇θlfθ (xi)> ∇θlfθ(xj).

Neural Tangent Kernel regression

The fine-tuned model is denoted by fθ∗(·) : Rd → Rc which is obtained by minimizing
the typical empirical risk minimization problem

θ∗ = minimize
θ

R(θ), (3)

where
R(θ) = 1

n

n∑
i=1

L(fθ(xi), yi). (4)

Neural Tangent Kernel regression

Let H be the reproducing kernel Hilbert space (RKHS) endowed with a positive definite
kernel function k(·, ·), i.e.,

H =
{

f (·) =
n∑

i=1
αik(·, xi)

}
.

Assuming the solution lies in or close to this Hilbert space, then as an alternative to (3),
we solve

minimize
f∈H

1
n

∑
(x,y)∈DT

‖f (x) − y‖2
2 + σ‖f‖2

H, (5)

f ∗(·) = K (·, X) [K (X,X) + σI]−1 y.

Main Theorem

The empirical risk is bounded as
σ ‖y‖2

2
σ + λmax(K)

≤ R(θ) ≤ σ ‖y‖2
2

σ + λmin(K)
(6)

where λmin(K) and λmax(K) are the minimum and maximum eigenvalues of K(X, X),
respectively.

How does layer selection change the Eigenvalue spectrum of the

NTK?

Let K be the NTK with respect to the set of selected fine-tuning parameters and S be
the kernel with respect to the parameters of the candidate layers, to add to fine-tuning
parameters. Then

(1 − η)λi(K) ≤ λi(K + S) ≤ (1 + η)λi(K), (7)

where η = ‖K−1/2S K−1/2‖.

Interaction Between eigenvalue spectrum and risk Bounds

Let K be the NTK induced by the trainable parameters in θ, then if κ(K + σI) ≤ c,
we have

λmax(K + S + σI)
aλmax(K + σI)

≤ R(θ ∪ θ̂)
R(θ)

≤ aλmax(K + S + σI)
λmax(K + σI)

, (8)

where a = c
(1−η)2 , η = ‖K−1/2SK−1/2‖ and S is the kernel induced by θ̂ with [S]i,j =

∇θ̂fθ (xi)> ∇θ̂fθ(xj).

• Time(s) for calculating the NTK on 32 random samples from the training set:

Dataset Fine-tuning Time NTK Calculation Time
CoLA 187 33
SST-2 794 63
Yelp 46,096 245

IMDb 1,541 55

Numerical Result

• There is a positive correlation between the convergence rate of optimization steps
of LoRA over 10 epochs and condition number κ(K + σI) of NTK at initialization:
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• There is a negative correlation be-
tween evaluation accuracy and the con-
dition number of NTK. LoRA with r =
8 is used to fine-tune {Wk} of the lay-
ers {0, 5, 11}. In our experiments we
observed that λmin(K) ≈ 0 → the reg-
ularized condition number, κ(K + σI),
is tracing λmax(K). CoLA SST-2 Yelp IMDb

Dataset
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• Empirical risk ratio log
(

R(θ∪θ̂)
R(θ)

)
and maximum eigenvalue ratio log

(
λmax(K+S+σI)

λmax(K+σI)

)
are used to evaluate the impact of candidate layers on the model. Here, θ is fixed as
the weights {Wk} of layer {0}, while θ̂ represents the candidate layers:
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