Introduction

Given the pre-trained model fg, and the target dataset Dp = {(x;,y;)}7, for
the downstream task, we look at fine-tuning as an NTK regression problem.

e In SGD, the update to parameters at step t is given by
0,1 —0;= UEXNDT VeL(fo,(x),y)]
= NEx-p, [Vofo,(x)V L (fo,(x),y)]. (1)
e Using the first-order Taylor expansion
f9t+1 (X/> — f@t (X/> ~ <v9f9t<X/)7 0t+1 — 075>
= nEx-p, |Vofe, (X)) - Vofe,(x)V L (fo,(x).y)
VL (fo.(x),¥)]- (2)

This indicates that the learning dynamics of SGD is equivalent to NTK regression when
the kernel is chosen to be the NTK, i.e., k; (x,x') = Vg fo, (X)' Vo fo,(x).

e We call the model linearized or in the lazy regime if k; (x, x’) ~ k, (x,x’).

— UEXNDT [

e Looking at fine-tuning through the lens of

Figure 1. Fine-tuning in the lazy regime is close to kernel regression on the tangent space. fp+(x) is the
fine-tuned model obtained by empirical risk minimization. If fine-tuning remains in the linearized
regime, then after T steps of training fp:(x) ~ fg,(x) + (Vo fo,(x), 07 — 0p).

e 0' — the parameters of layer [ from the pretrained model.

e The NTK matrix is defined as [K]; ; = S/, Vifo (x:)' Vg fo(x;).

Neural Tangent Kernel regression
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Neural Tangent Kernel regression

The fine-tuned model is denoted by fg+(-) : RY — R® which is obtained by minimizing
the typical empirical risk minimization problem

0" = miniemize R(0), (3)
where .
R(0) = 3" L(fo(x).¥.) ()
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Let ‘H be the reproducing kernel Hilbert space (RKHS) endowed with a positive definite
kernel function k(-,-), i.e.,

H = {f(') = Zig@ik(wxz')}-

Assuming the solution lies in or close to this Hilbert space, then as an alternative to (3),

we solve

1
minimize — Y |[f (x) =yl + o[l fIl3, (5)

feH n
(Xay)GDT

f()=K(X)[KXX)+oly.

Main Theorem

The empirical risk is bounded as

o |lyll3 o |lyll3
< 0) < 6
0+ Amax(K) RIE) = 0 + Amin(K) (6)

where Apin (K) and Ay (K) are the minimum and maximum eigenvalues of K(X, X),
respectively.

How does layer selection change the Eigenvalue spectrum of the
NTK?
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Numerical Result

Let K be the NTK with respect to the set of selected fine-tuning parameters and S be
the kernel with respect to the parameters of the candidate layers, to add to fine-tuning
parameters. Then

(1 =mAi(K) < M(K +S) < (1 +n)Ai(K), (7)
where n = |[K=1/?S K~'/?|.

Interaction Between eigenvalue spectrum and risk Bounds

Let K be the NTK induced by the trainable parameters in 6, then if x(K + oI) < ¢,
we have

Amax(K+S +0I) _ R(OUB) _ (K +8S +01) (s)
AAmax (K + o) RO) — (K +oI)

where a = (1_077)2, n = ||[K Y2SK 12| and S is the kernel induced by 8 with S)i; =

Vafo (xi)' Vafolx;).

<

e There is a positive correlation between the convergence rate of optimization steps
of LoRA over 10 epochs and condition number k(K + oI) of NTK at initialization:
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e There is a negative correlation be- a5
tween evaluation accuracy and the con-
dition number of NTK. LoRA with r =
8 is used to fine-tune {Wy} of the lay-
ers {0,5,11}. In our experiments we
observed that Ay (K) =~ 0 — the reg-
ularized condition number, k(K + oI), 7 |
is tracing Apax(K). coLA sST2 elp IMDb
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e Fmpirical risk ratio log (R7(20(g?)

Amax (K+S+0T)
Amax (K—+0T)

are used to evaluate the impact of candidate layers on the model. Here, 0 is fixed as
the weights {W.} of layer {0}, while 0 represents the candidate layers:

) and maximum eigenvalue ratio log (

CoLA

0.005 1

References

e Time(s) for calculating the NTK on 32 random samples from the training set:

Dataset |Fine-tuning Time|NTK Calculation Time
CoLA 187 33

SS'T-2 794 63

Yelp 46,096 245

NeurlPS 2024 Workshop on Adaptive Foundation Models: Evolving Al for Personalized and Efficient Learning

e Malladi, S., Wettig, A., Yu, D., Chen, D. and Arora, S., 2023, July. A kernel-based
view of language model fine-tuning. In International Conference on Machine Learning
(pp. 23610-23641). PMLR.

e Jacot, A., Gabriel, F. and Hongler, C., 2018. Neural tangent kernel: Convergence and
generalization in neural networks. Advances in neural information processing systems,
31.

zesmae2@uic.edu


https://wave-opt.lab.uic.edu/
mailto:zesmae2@uic.edu

