## Accelerated Preference Optimization for Large Language Model Alignments



Jiafan He and Huizhuo Yuan and Quanquan Gu

Department of Computer Science, University of California, Los Angeles

#### Momentum in Preference Optimization

Reinforcement Learning from Human Feedback via direct preference optimization has established itself as a crucial methodology for language model alignment. While momentum-based acceleration has demonstrated benefits in optimization theory, its theoretical foundations and practical applications in preference optimization remain unexplored.

Our Goal: Establish a momentum-based acceleration framework for preference optimization and validate its efficiency through large-scale language model experiments.

#### Accelerated Preference Optimization(APO)

- Motivation: Nesterov's momentum method and Catalyst framework which accelerates proximal point method
- Catalyst Framework: Extrapolation after update:

$$x_{t+1} = \arg\min_{x} \{f(x) + \kappa D(x, y_t)\}$$
$$y_{t+1} = x_{t+1} + \alpha_t (x_{t+1} - x_t)$$

Extrapolation on Preference Optimization: After policy update, apply Momentum:

 $\log \pi_{t+1}(y|x) = \log \widehat{\pi}_{t+1} + \alpha (\log \widehat{\pi}_{t+1} - \log \widehat{\pi}_t)$  $\pi_{t+1}(y|x) \propto \widehat{\pi}_{t+1}(y|x) \cdot (\widehat{\pi}_{t+1}(y|x)/\widehat{\pi}_t(y|x))^{\alpha}$ 

Implementation: Update reduces to parameter

#### Setup

#### Setting for the Optimization Porblem:

- $\triangleright~$  Context set  ${\mathcal X}$  and response set  ${\mathcal Y}$
- ▷ Policy  $\pi : \mathcal{X} \to \Delta(\mathcal{Y})$  maps prompts to response distributions

#### Preference Collection Process:

- $\triangleright~$  Sample context x from distribution  $\rho$
- ▷ Generate responses  $(y_1, y_2)$  from reference policy  $\mu$
- ▷ Collect preference feedback  $(y^w \succ y^l)$

### **Latent Preference Model:**

▷ Bradley-Terry model with latent reward  $r^*(x, y)$  $P(y_1 \succ y_2 | x) = \frac{\exp(r^*(x, y_1))}{\exp(r^*(x, y_1)) + \exp(r^*(x, y_2))}$ 

#### **Iterative Preference Optimization Framework**

Policy Update Process: For each iteration t ∈ [T]:
1. Update reward model with current policy π<sub>t</sub>:
r<sub>t</sub>(·, ·) ← arg max E<sub>D<sub>t</sub></sub>[ℓ(r, x, y<sup>w</sup>, y<sup>l</sup>, π<sub>t</sub>)]

momentum when policy is softmax parameterized

#### **Theoretical Results**

Main Results: Under mild assumptions of realizability and boundedness, APO achieves sub-optimality gap:

 $\mathbb{E}_{x \sim \rho, y \sim \pi^*, y' \sim \widehat{\pi}_{T+1}} \left[ r^*(x, y) - r^*(x, y') \right] \le \widetilde{O} \left( (1 - \alpha) \beta / T \right)$ 

- Enhanced Convergence: With additional minimal sub-optimality gap, both DPO and SPPO loss converge:  $\mathbb{E}_{x \sim \rho}[\mathsf{D}_{\mathsf{TV}}(\widehat{\pi}_{T+1}, \pi^*)] \leq \exp(-O(T/(1-\alpha)))$
- Acceleration factor  $(1 \alpha)$  improves upon vanilla methods in both case after introducing the momentum

#### **Experimental Results**

- **Evaluation Metrics:** 
  - LC Win Rate: Length-controlled win rate in head-to-head comparisons with Claude-2
  - MT-Bench: Average scores on 8 multi-turn conversation tasks

where the loss function  $\ell$  can be one of:

Direct Preference Optimization (DPO):

 $\ell_{\mathsf{DPO}}(r_{\pi}, x, y^{w}, y^{l}, \pi_{t}) = -\log\sigma(r_{\pi}(x, y^{w}) - r_{\pi}(x, y^{l}))$ 

Self-Play Preference Optimization (SPPO):

 $\ell_{\mathsf{SPPO}}(r_{\pi}, x, y^{w}, y^{l}, \pi_{t}) = \frac{1}{2}(r_{\pi}(x, y^{w}) - 1 + \log Z_{\pi_{t}}(x))^{2} + \frac{1}{2}(r_{\pi}(x, y^{l}) + \log Z_{\pi_{t}}(x))^{2}$ 

- Identity Preference Optimization (IPO):
  - $\ell_{\mathsf{IPO}}(r_{\pi}, x, y^w, y^l, \pi_t) = (r_{\pi}(x, y^w) r_{\pi}(x, y^l) \tau^{-1})^2$
- 2. Optimize policy with KL regularization:

 $\widehat{\pi}_{t+1} \leftarrow \arg\max_{\pi} \mathbb{E}_{\rho,\pi}[r_t] - \beta \mathbb{E}_{\rho}[\mathsf{KL}(\pi \| \pi_t)]$ 

- **Direct Preference Optimization:** 
  - ▷ **Reparameterize Reward** instead of reward model:

 $r_{\pi}(x, y) = \beta \log \frac{\pi(y|x)}{\pi_t(y|x)}$ 

One-step optimization:

 $\widehat{\pi}_{t+1} \leftarrow \arg\min_{r_{\pi}} \mathbb{E}_{\mathcal{D}_{t}}[\ell(r_{\pi}, x, y^{w}, y^{l}, \pi_{t})]$ 

- Five Tasks: Performance on training-relevant dimensions (Writing, Roleplay, Extraction, STEM, Humanities)
- Results Summary:

| Method       | LC Win Rate | MT-Bench | Five Tasks |
|--------------|-------------|----------|------------|
| Base         | 17.11       | 7.64     | 9.14       |
| DPO (3 iter) | 27.32       | 7.43     | 9.14       |
| APO (3 iter) | 31.73       | 7.53     | 9.57       |

- Key Findings:
  - ▷ APO achieves 31.73 % win rate, improving DPO by 4.41%
  - Strong performance on training-specific domains (9.57/10)

#### Key Takeaways

- APO introduces theoretically-grounded acceleration to preference optimization
- Maintains strong performance across diverse tasks
- Framework generalizes to multiple loss functions

#### Get the Paper

# Proximal Point Method: The iterative optimization resembles Bregman Proximal Point Method:

 $\pi_{t+1} \leftarrow \arg\min_{\pi} \{ L_t(\pi) + \beta D(\pi, \pi_t) \}$ 

where  $L_t(\pi)$  corresponds to expected reward and  $D(\pi, \pi_t)$  is KL divergence

#### Accelerating Preference Optimization for Large Language Model Alignments