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Momentum in Preference Optimization

Reinforcement Learning from Human Feedback via direct
preference optimization has established itself as a crucial
methodology for language model alignment. While
momentum-based acceleration has demonstrated benefits in
optimization theory, its theoretical foundations and practical
applications in preference optimization remain unexplored.

Our Goal: Establish a momentum-based acceleration
framework for preference optimization and validate its ef-
ficiency through large-scale language model experiments.

Setup

▶ Setting for the Optimization Porblem:
▷ Context set X and response set Y
▷ Policy π : X → ∆(Y) maps prompts to response

distributions
▶ Preference Collection Process:

▷ Sample context x from distribution ρ
▷ Generate responses (y1, y2) from reference policy µ
▷ Collect preference feedback (yw ≻ yl)

▶ Latent Preference Model:
▷ Bradley-Terry model with latent reward r∗(x, y)

P (y1 ≻ y2|x) =
exp(r∗(x, y1))

exp(r∗(x, y1)) + exp(r∗(x, y2))

Iterative Preference Optimization Framework

▶ Policy Update Process: For each iteration t ∈ [T ]:
1. Update reward model with current policy πt:

rt(·, ·)← argmax
r

EDt
[ℓ(r, x, yw, yl, πt)]

where the loss function ℓ can be one of:
▶ Direct Preference Optimization (DPO):

ℓDPO(rπ, x, y
w, yl, πt) = − log σ(rπ(x, y

w)− rπ(x, y
l))

▶ Self-Play Preference Optimization (SPPO):

ℓSPPO(rπ, x, y
w, yl, πt) =

1

2
(rπ(x, y

w)− 1 + logZπt(x))
2

+
1

2
(rπ(x, y

l) + logZπt(x))
2

▶ Identity Preference Optimization (IPO):

ℓIPO(rπ, x, y
w, yl, πt) = (rπ(x, y

w)− rπ(x, y
l)− τ−1)2

2. Optimize policy with KL regularization:

π̂t+1← argmax
π

Eρ,π[rt]− βEρ[KL(π∥πt)]
▶ Direct Preference Optimization:

▷ Reparameterize Reward instead of reward model:

rπ(x, y) = β log
π(y|x)
πt(y|x)

▷ One-step optimization:

π̂t+1← argmin
rπ

EDt
[ℓ(rπ, x, y

w, yl, πt)]

▶ Proximal Point Method: The iterative optimization
resembles Bregman Proximal Point Method:

πt+1← argmin
π
{Lt(π) + βD(π, πt)}

where Lt(π) corresponds to expected reward and D(π, πt) is
KL divergence

Accelerated Preference Optimization(APO)

▶ Motivation: Nesterov’s momentum method and Catalyst
framework which accelerates proximal point method

▶ Catalyst Framework: Extrapolation after update:

xt+1 = argmin
x
{f (x) + κD(x, yt)}

yt+1 = xt+1 + αt(xt+1 − xt)

▶ Extrapolation on Preference Optimization: After
policy update, apply Momentum:

log πt+1(y|x) = log π̂t+1 + α(log π̂t+1 − log π̂t)

πt+1(y|x) ∝ π̂t+1(y|x) · (π̂t+1(y|x)/π̂t(y|x))α

▶ Implementation: Update reduces to parameter
momentum when policy is softmax parameterized

Theoretical Results

▶ Main Results: Under mild assumptions of realizability and
boundedness, APO achieves sub-optimality gap:

Ex∼ρ,y∼π∗,y′∼π̂T+1
[
r∗(x, y)− r∗(x, y′)

]
≤ Õ

(
(1− α)β/T

)
▶ Enhanced Convergence: With additional minimal

sub-optimality gap, both DPO and SPPO loss converge:

Ex∼ρ[DTV(π̂T+1, π
∗)] ≤ exp(−O(T/(1− α)))

▶ Acceleration factor (1− α) improves upon vanilla methods
in both case after introducing the momentum

Experimental Results

▶ Evaluation Metrics:
▷ LC Win Rate: Length-controlled win rate in head-to-head

comparisons with Claude-2
▷ MT-Bench: Average scores on 8 multi-turn conversation

tasks
▷ Five Tasks: Performance on training-relevant dimensions

(Writing, Roleplay, Extraction, STEM, Humanities)
▶ Results Summary:

Method LC Win Rate MT-Bench Five Tasks

Base 17.11 7.64 9.14
DPO (3 iter) 27.32 7.43 9.14
APO (3 iter) 31.73 7.53 9.57

▶ Key Findings:
▷ APO achieves 31.73 % win rate, improving DPO by 4.41%
▷ Strong performance on training-specific domains

(9.57/10)

Key Takeaways

▶ APO introduces theoretically-grounded acceleration to
preference optimization

▶ Maintains strong performance across diverse tasks
▶ Framework generalizes to multiple loss functions
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