CAT Pruning: Cluster-Aware Token Pruning For Text-to-Image Diffusion Models

Xinle Cheng¹, Zhuoming Chen², Zhihao Jia²

²Carnegie Mellon University ¹Peking University

At each iteration, tokens are dynamically selected using a combination of the clustering results, noise magnitude, and token staleness.

Clustering Gives Rise to Spatial Details

Enforcing Spatial-awareness while Clustering

$$pos_enc(i \cdot w + j, :) = \begin{cases} \frac{i}{h}, & \text{if } 1 \le k \le \frac{d}{2} \\ \frac{j}{w}, & \text{if } \frac{d}{2} + 1 \le k \le d \end{cases}$$

After adding this positional encoding, we perform KMeans.

Token Pruning via Masking

Algorithm 1 is an example of how our method applies to the attention mechanism.

Correlation Between Predicted Noise and Historical Noise

Figure 2: Scatter plot showing the norm of the relative noise at the current step versus the norm of the relative noise at the previous step. We calculate and visualize the Pearson correlation coefficient between these two values.

Proposition 1. Selecting tokens with larger relative noise in the current step increases the likelihood that these tokens will exhibit a larger relative noise in subsequent steps.

Balancing Noise-Based Token Selection with Distributional Considerations

A cat holding a sign that says hello world	The Great Pyramid of Giza situated in front of Mount Everest	a mixed media image with a photograph of a woman with long orange hair	a girl with long curly blonde hair and sunglasses
		orunge null	

	Tithm 2 Finding Indices for CAT Pruning	
1: I 1	nput: i, t_0, n_i, n_{t_0}	
2:ir	$ndices \leftarrow []$	
3: R	$2N \leftarrow n_i - n_{t_0}$	
4: if	$i = t_0 + 1$ then	
5:	$clusters \leftarrow KMeans(pos_enc + n_i - n_{t_0})$	⊳ Cluster noise
6:	$graph_scores \leftarrow pool(clusters, n_i - n_{t_0} + pos_enc)$	▷ Aggregate cluster scores
7:	$top_clusters \leftarrow topk(graph_scores)$	
8:	for each $c \in top_clusters$ do	
9:	$indices \leftarrow indices \cup topk((n_i - n_{t_0})[j], \text{ for } j \in c)$	
10:	end for	
11: e l	lse	
12:	$graph_scores \leftarrow pool(clusters, pos_enc + n_i - n_{t_0})$	\triangleright Use clusters from $t_0 + 1$
13:	$top_clusters \leftarrow topk(graph_scores)$	
14:	for each $c \in top_clusters$ do	
15:	$indices \leftarrow indices \cup topk((n_i - n_{t_0})[j], \text{ for } j \in c)$	
16:	end for	
17:	$indices \leftarrow indices \cup topk(-f_i(j), for j \notin indices)$	▷ Add stale tokens
18: e i	nd if	
19: r e	eturn indices	

Experiments

Prompt : a cute blue (kitten bee) looking up, psychedelic background, beautiful detailed eyes, chibi

Predicted Noise (w/o balance)

Predicted Noise (Baseline)

Chosen Indices (w/ balance)

Predicted Noise (w/ balance)

Predicted Noise (Baseline)

Output (w/o balance)

Output (Baseline)

Output (w/ balance)

Output (Baseline)

Prompt : a frozen cosmic rose, the petals glitter with a crystalline shimmer, swirling nebulas, 8k unreal engine photorealism, ethereal lighting, red, nighttime, darkness, surreal art

Method	PartiPrompts			COCO2017				
	MACs ↓	Throughput \uparrow	Speed \uparrow	CLIP Score ↑	MACs ↓	Throughput \uparrow	Speed \uparrow	CLIP Score ↑
SD3 - 28 steps	168.28T	0.119	$1.00 \times$	32.33	168.28T	0.113	$1.00 \times 1.87 \times 1.51 \times$	32.47
Ours - 28 steps	90.28T	0.217	$1.82 \times$	32.03	90.28T	0.212		32.21
AT-EDM - 28 steps	93.48T	0.166	$1.40 \times$	31.07	93.48T	0.170		30.59
Pixart- Σ - 28 steps	120.68 T	0.151	1.00 ×	31.12	120.68 T	0.143	$1.00 \times$	31.36
Ours - 28 steps	60.08 T	0.262	1.73 ×	31.06	60.08 T	0.258	$1.80 \times$	30.02
AT-EDM - 28 steps	62.08T	0.238	1.57 ×	24.30	62.08T	0.244	$1.71 \times$	14.66

Table 2: Comparison of different methods on PartiPrompts and COCO2017 datasets. All methods here adopt 28 sampling steps.

Method	PartiPrompts			COCO2017				
, , , , , , , , , , , , , , , , , , ,	MACs↓	Throughput \uparrow	Speed \uparrow	CLIP Score ↑	MACs ↓	Throughput \uparrow	Speed \uparrow	CLIP Score ↑
SD3 - 50 steps	300.50 T	0.062	$1.00 \times$	32.92	300.50 T	0.062	$1.00 \times$	32.20
Ours - 50 steps	136.70 T	0.134	$2.15 \times$	32.72	136.70 T	0.130	$2.08 \times$	32.18
AT-EDM - 50 steps	143.42T	0.107	$1.72 \times$	28.48	143.42T	0.102	$1.64 \times$	28.20
Pixart- Σ - 50 steps	215.40T	0.079	1.00 imes	31.41	215.40T	0.078	$1.00 \times$	31.20
Ours - 50 steps	88.24 T	0.166	$2.09 \times$	31.36	88.24 T	0.160	$2.04 \times$	30.62
AT-EDM - 50 steps	92.44T	0.148	$1.87 \times$	17.08	92.44T	0.147	$1.88 \times$	11.00

Table 3: Comparison of different methods on PartiPrompts and COCO2017 datasets 50 Steps. All methods here adopt 50 sampling steps.

References

Karras, T., Aittala, M., Aila, T. and Laine, S. (2022). Elucidating the design space of diffusion-based generative models. In Proc. NeurIPS.

Ma, X., Fang, G., Mi, M. B. and Wang, X. (2024a). Learning-to-cache: Accelerating diffusion transformer via layer caching.

Twitter

