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❏  Contributions of Nexus

Nexus BTM1 BTX2 MoE

Experts trained 
independently ✅ ✅ ✅ ❌
Experts are 
specialized ✅ ✅ ✅ ❌
Learned routing ✅ ❌ ✅ ✅
New experts can be 
added ✅ ❌ ❌ ❌

💪 Efficient parallel, asynchronous expert training
💪 Experts truly specialized on individual domains
💪 Adapt to new experts after initial training without 
catastrophic forgetting

Our vision: In an ecosystem with many open-source 
finetunes of the same base model (e.g. Llama 3), use 
Nexus to quickly assemble your personalized MoE, and 
extend it anytime with new domains!

Mixture of Experts from Specialized LMs
? How can we best upcycle specialized dense 

models into an MoE model?
? How can an MoE router adapt to new experts 

after the initial training?

● Train n dense experts (initialized from same pretrained model) on 
different datasets/domains (e.g. ArXiv, Books, C4, Wikipedia)

● Convert the dense models to a single Nexus model by stacking the 
dense model MLPs into an MoE layer and averaging all other params 

● How do we know when to route to each expert?
1. Baseline (BTX): train a router (linear proj.) for 40B tokens
2. Nexus: use expert training data embeddings as informative 

prior! They capture the “knowledge” each expert has. Train for 
40B tokens to learn a projection from data embedding space 
to model latent space, then route by choosing the most 
similar embedding to a token’s latent representation

Special thanks to John Lin, Tim Chung, Sylvie Shi, Arkady Arkhangorodsky, David Cairuz, Felipe Cruz Salinas, Milad Alizadeh, James Owers-Bardsley, and Viraat Aryabumi for their support!

❏ Nexus beats BTM and BTX for pre-training:

A: No, same complexity as vanilla MoE!
- Training: less than 1% additional parameters
- Inference: 0% overhead as expert embeddings can be 

precomputed!
- Intuition: learned projection is a hypernetwork that computes the 

router weights, using the dataset embeddings as input. Only need 
to recompute when set of expert changes

Q: Does Nexus add overhead for training/inference?

● For the new expert, a dense model is trained for 40B tokens on a 
new domain (Code), appended to the Nexus expert layer, and 
fine-tuned on all data for budgets of 200M/500M/1B tokens

● Nexus outperforms BTX on the new domain, and the gap 
increases with more finetuning

● 4 experts are initialized from a pretrained model and trained 
for 40B tokens on ArXiv, Books, C4, and Wikipedia

● Upcycling with Nexus outperforms both BTX and a full model 
averaging baseline on Knowledge, Science, Reasoning and 
MMLU downstream tasks (all compute and data matched)

● Nexus also beats training a dense model with the 
data/compute of all experts!

❏ Methodology

arxiv.org/abs/
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❏ Current MoEs are limited in different ways:

❏ Nexus adapts better to new experts:

A: Yes!
- Nexus assigns tokens more 

often to the expert specia- 
lized on that domain

- Comparison of routing 
distributions for code 
tokens:

Q: Is the routing in Nexus truly specialized?
1. Nexus 2.  Linear router


