
Nexus: Specialization meets Adaptability
for Efficiently Training Mixture of Experts

Nikolas Gritsch12*, Qizhen Zhang3, Acyr Locatelli2,
Sara Hooker1, Ahmet Üstün1

1Cohere For AI 2Cohere 3University of Oxford
*Work done as part of the Research Scholar Program

nikolasgritsch@cohere.com

References
[1] Margaret Li, Suchin Gururangan, Tim Dettmers, Mike Lewis, Tim Althoff, Noah A. Smith, & Luke Zettlemoyer. (2022). Branch-Train-Merge: Embarrassingly Parallel Training of Expert Language Models.
[2] Sainbayar Sukhbaatar, Olga Golovneva, Vasu Sharma, Hu Xu, Xi Victoria Lin, Baptiste Rozière, Jacob Kahn, Daniel Li, Wen-tau Yih, Jason Weston, & Xian Li. (2024). Branch-Train-MiX: Mixing Expert LLMs into a Mixture-of-Experts LLM.
[3] Suchin Gururangan, Margaret Li, Mike Lewis, Weĳia Shi, Tim Althoff, Noah A. Smith, & Luke Zettlemoyer. (2023). Scaling Expert Language Models with Unsupervised Domain Discovery.

❏ Contributions of Nexus

Nexus BTM1 BTX2 MoE

Experts trained
independently ✅ ✅ ✅ ❌
Experts are
specialized ✅ ✅ ✅ ❌
Learned routing ✅ ❌ ✅ ✅
New experts can be
added ✅ ❌ ❌ ❌

💪 Efficient parallel, asynchronous expert training
💪 Experts truly specialized on individual domains
💪 Adapt to new experts after initial training without
catastrophic forgetting

Our vision: In an ecosystem with many open-source
finetunes of the same base model (e.g. Llama 3), use
Nexus to quickly assemble your personalized MoE, and
extend it anytime with new domains!

Mixture of Experts from Specialized LMs
? How can we best upcycle specialized dense

models into an MoE model?
? How can an MoE router adapt to new experts

after the initial training?

● Train n dense experts (initialized from same pretrained model) on
different datasets/domains (e.g. ArXiv, Books, C4, Wikipedia)

● Convert the dense models to a single Nexus model by stacking the
dense model MLPs into an MoE layer and averaging all other params

● How do we know when to route to each expert?
1. Baseline (BTX): train a router (linear proj.) for 40B tokens
2. Nexus: use expert training data embeddings as informative

prior! They capture the “knowledge” each expert has. Train for
40B tokens to learn a projection from data embedding space
to model latent space, then route by choosing the most
similar embedding to a token’s latent representation

Special thanks to John Lin, Tim Chung, Sylvie Shi, Arkady Arkhangorodsky, David Cairuz, Felipe Cruz Salinas, Milad Alizadeh, James Owers-Bardsley, and Viraat Aryabumi for their support!

❏ Nexus beats BTM and BTX for pre-training:

A: No, same complexity as vanilla MoE!
- Training: less than 1% additional parameters
- Inference: 0% overhead as expert embeddings can be

precomputed!
- Intuition: learned projection is a hypernetwork that computes the

router weights, using the dataset embeddings as input. Only need
to recompute when set of expert changes

Q: Does Nexus add overhead for training/inference?

● For the new expert, a dense model is trained for 40B tokens on a
new domain (Code), appended to the Nexus expert layer, and
fine-tuned on all data for budgets of 200M/500M/1B tokens

● Nexus outperforms BTX on the new domain, and the gap
increases with more finetuning

● 4 experts are initialized from a pretrained model and trained
for 40B tokens on ArXiv, Books, C4, and Wikipedia

● Upcycling with Nexus outperforms both BTX and a full model
averaging baseline on Knowledge, Science, Reasoning and
MMLU downstream tasks (all compute and data matched)

● Nexus also beats training a dense model with the
data/compute of all experts!

❏ Methodology

arxiv.org/abs/
2408.15901

❏ Current MoEs are limited in different ways:

❏ Nexus adapts better to new experts:

A: Yes!
- Nexus assigns tokens more

often to the expert specia-
lized on that domain

- Comparison of routing
distributions for code
tokens:

Q: Is the routing in Nexus truly specialized?
1. Nexus 2. Linear router

