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We propose a method for adapting Multimodal LLMs (MLLMs) by 
controlling their generation through reward-guided decoding, enabling 
user control over visual grounding and test-time compute in image 
captioning tasks.
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Describe this image in detail.

This image features a large body of 
water such as a lake or a bay filled 
with several boats of various sizes.
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The image features a bay golf course 
with large boats tied up at the 
docks near different houses.
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The image depicts a lush green park 
situated alongside two large lakes.
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…various sizes. The boats are docked 
against a small shore or pier, and a 
busy city with trees and buildings can 
be observed in the background.
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…various sizes. In addition to the 
boats, there are some moored canoes 
scattered around the waterfront.
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…various sizes. A cruise ship with two 
colors, red and white, can be seen 
sailing down the lake.
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Motivation
● It is becoming increasingly desirable to steer MLLMs to satisfy 

diverse user needs.

● We focus on two user needs:
○ Control over the trade-off between output precision and 

thoroughness 
○ Control over the amount of test-time compute

● Reward-guided decoding enables on-the-fly fine-grained 
controllability, which is not possible with existing methods (e.g. 
prompting, fine-tuning).

Method

● MRM: (image, instruction, response) → score

● 2 reward models to evaluate object precision (rhal ) and recall (rrec ).

1. Building multimodal reward models (MRMs)

Learning rhal  from preference data

● Fine-tune PaliGemma on multimodal preference data for visual 
hallucinations:

● Objective based on the Bradley-Terry model:

Building rrec  from off-the-shelf modules

● Pre-trained object detector (OWLv2), pre-trained word 
embedding (S-BERT), and POS tagger (NLTK).

● Detect target objects in the input image, extract predicted 
objects from the generated caption, compute assignment using 
word embedding similarity, and estimate object recall.

2. Multimodal reward-guided decoding (MRGD)
● Goal: guide an MLLM’s generation modulating the response 

according to a combination of reward functions.
● Algorithm: sample k partial completions, select the one with 

maximum score, and repeat until generating <EOS>.
● Partial responses are evaluated at the end of semantically 

complete segments, i.e. every T sentences.
● Reward strength (w) can be chosen at test time:

Reward model evaluation
Accuracy: percentage of times the reward model assigns a higher score 
to the chosen response than to the rejected one.

Average validation accuracy: 77.54%

MRGD (k=30, T=1) either matches or outperforms existing methods 
to mitigate object hallucinations, while offering greater flexibility.

Model Decoding CHAIRi 
(↓)

CHAIRs 
(↓)

Recall 
(↑) Length

Baselines

LLaVA-1.57B

Greedy 15.05 48.94 81.30 90.12

BS@10 15.80 52.94 81.48 96.31

Fine-tuning approaches
POVID ? 5.4 31.8 - -

CSR BS@5 7.3 28.0 - -

Guided decoding approaches

LLaVA-1.57B

VCD* 15.76 54.18 81.66 102.91

CGD† 10.44 41.76 80.43 92.26

MRGD (w=1.0) 6.83 26.38 74.52 93.28

MRGD (w=0.5) 7.83 29.68 77.54 94.26

MRGD (w=0.25) 9.76 37.20 79.96 95.93

MRGD (w=0.0) 26.94 72.84 85.03 78.35

Downstream performance

* indicates results computed by us running the original code.
† indicates results from our reimplementation.

Leveraging the reward model to guide the generation more often (lower 
T) improves compute-efficiency. 

Trade-off between visual grounding and compute

Using more compute 
by increasing k 
improves both object 
precision (inverse of 
CHAIRi) and recall, 
while varying w 
modulates the 
trade-off for a given 
level of compute.

Trade-off between object precision and recall


