

Controlling Multimodal LLMs via Reward-guided Decoding

Oscar Mañas, Pierluca D'Oro, Koustuv Sinha, Adriana Romero-Soriano, Michal Drozdzal, Aishwarya Agrawal

TL;DR

We propose a method for adapting Multimodal LLMs (MLLMs) by controlling their generation through reward-guided decoding, enabling user control over visual grounding and test-time compute in image captioning tasks.

Motivation

- It is becoming increasingly desirable to steer MLLMs to satisfy diverse user needs.
- We focus on two user needs:
 - Control over the trade-off between output precision and thoroughness
 - \circ $\,$ Control over the amount of test-time compute $\,$
- Reward-guided decoding enables on-the-fly fine-grained controllability, which is not possible with existing methods (e.g. promoting, fine-tuning)

Experiments

Downstream performance

MRGD (k=30, T=1) either matches or outperforms existing methods to mitigate object hallucinations, while offering greater flexibility.

Model	Decoding	CHAIR _i (↓)	CHAIR _s (↓)	Recall (↑)	Length
Baselines					
LLaVA-1.5 _{7B}	Greedy	15.05	48.94	81.30	90.12
	BS@10	15.80	52.94	81.48	96.31
Fine-tuning approaches					
POVID	?	5.4	31.8	-	-
CSR	BS@5	7.3	28.0	-	-
Guided decoding approaches					
	VCD*	15.76	54.18	81.66	102.91
	CGD ⁺	10.44	41.76	80.43	92.26
	MPGD(w=10)	6 83	26 38	74 52	92.28

Method

- 1. Building multimodal reward models (MRMs)
- MRM: (image, instruction, response) \rightarrow score
- 2 reward models to evaluate object precision (*r_{hal}*) and recall (*r_{rec}*).

Learning *r*_{hal} from preference data

• Fine-tune PaliGemma on multimodal preference data for visual hallucinations: $D = \{x_v, x_q, y^+, y^-\}_i$

Reward model evaluation

Accuracy: percentage of times the reward model assigns a higher score to the chosen response than to the rejected one.

Average validation accuracy: 77.54%

Trade-off between visual grounding and compute

Leveraging the reward model to guide the generation more often (lower *T*) improves compute-efficiency.

• Objective based on the Bradley-Terry model:

 $\mathcal{L}_{RM}(x_v, x_q, y^+, y^-; \theta) = -\log\sigma(r_{\text{hal}}^{\theta}(x_v, x_q, y^+) - r_{\text{hal}}^{\theta}(x_v, x_q, y^-))$

Building **r**_{rec} from off-the-shelf modules

- Pre-trained object detector (OWLv2), pre-trained word embedding (S-BERT), and POS tagger (NLTK).
- Detect target objects in the input image, extract predicted objects from the generated caption, compute assignment using word embedding similarity, and estimate object recall.

2. Multimodal reward-guided decoding (MRGD)

- Goal: guide an MLLM's generation modulating the response according to a combination of reward functions.
- Algorithm: sample *k* partial completions, select the one with maximum score, and repeat until generating <E0S>.
- Partial responses are evaluated at the end of semantically complete segments, i.e. every *T* sentences.
- Reward strength (*w*) can be chosen at test time:

$$s(x_v, x_q, y) = w \cdot r_{\text{hal}}(x_v, x_q, y) + (1 - w) \cdot r_{\text{rec}}(x_v, x_q, y)$$

Trade-off between object precision and recall

Using more compute by increasing *k* improves both object precision (inverse of CHAIR_i) and recall, while varying *w* modulates the trade-off for a given level of compute.

