

NAVER AI LAB

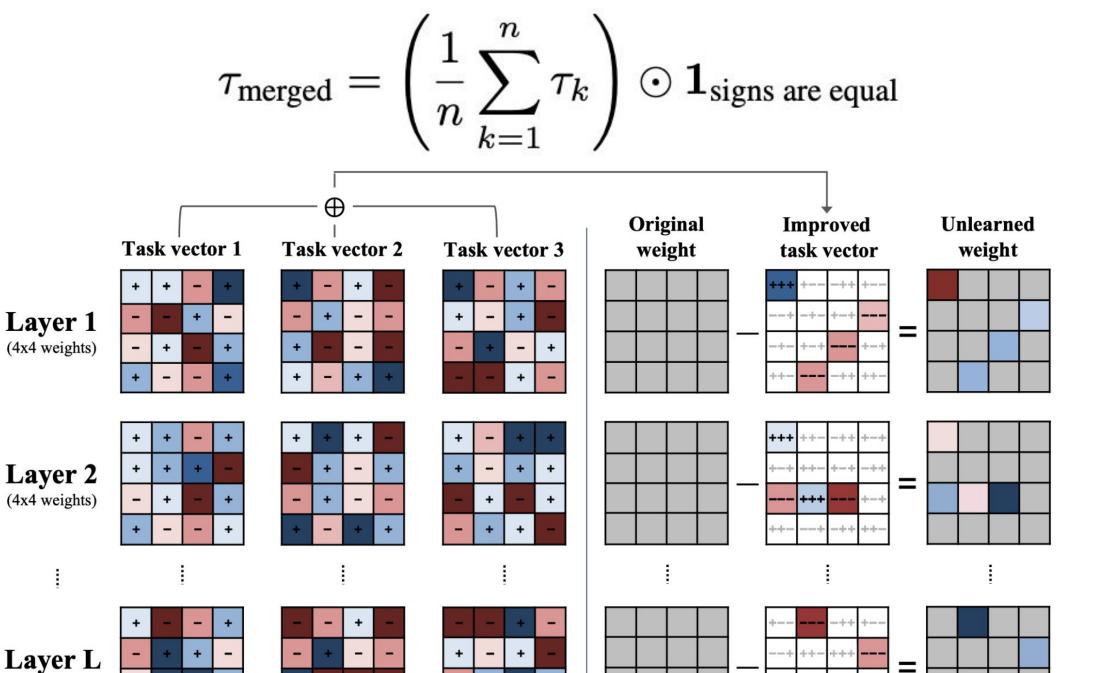
NegMerge: Consensual Weight Negation for Strong Machine Unlearning

Hyoseo Kim^{1,2*}, Dongyoon Han¹⁺, Junsuk Choe²⁺ ¹NAVER AI LAB, ²Sogang University

*Work done during an internship at NAVER AI Lab, +Corresponding author

What is Machine Unlearning?

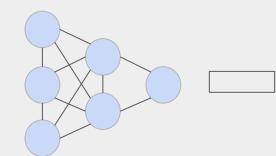
- Removal of specific knowledge from a pre-trained model without impacting its remaining knowledge.
- Applications: protecting privacy and rights under regulations like GDPR, correcting inaccuracies, and removing harmful data.

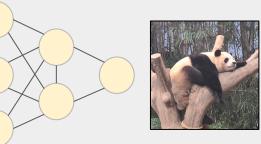

pre-trained model's knowledge

unlearned model's knowledge

Overview of NegMerge

- Hyperparameter tuning generates multiple fine-tuned models.
- Merge all models based on the sign consensus of task vectors.

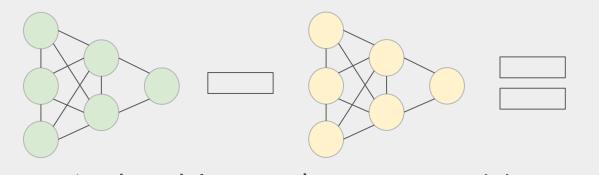

How to Unlearn?


- Forgetting via negation^[1]
 - Adjust the model by subtracting the sum of the task vectors.

$$\theta_{unlearn} = \theta_{pre} - \lambda (\theta_{ft}^{forget} - \theta_{pre})$$

sum of the task vectors

define task vector (a)


task vectors containing

forget set knowledge

fine-tuned model

pre-trained model

subtract task vector (a)

pre-trained model

task vectors containing forget set knowledge

unlearned model

[1] Ilharco, Gabriel, et al. "Editing models with task arithmetic." The Eleventh International Conference on Learning Representations.

Challenges of Machine Unlearning

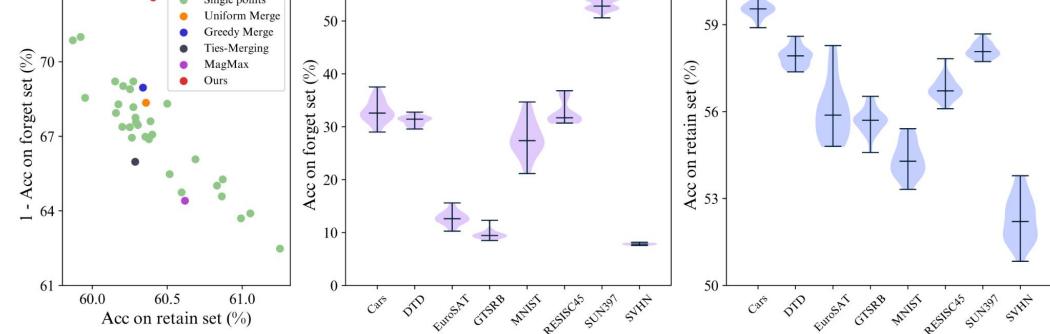
- Highly sensitive to the hyperparameters used for fine-tuning.
- Trade-off in unlearning performance and retaining performance.

73 -

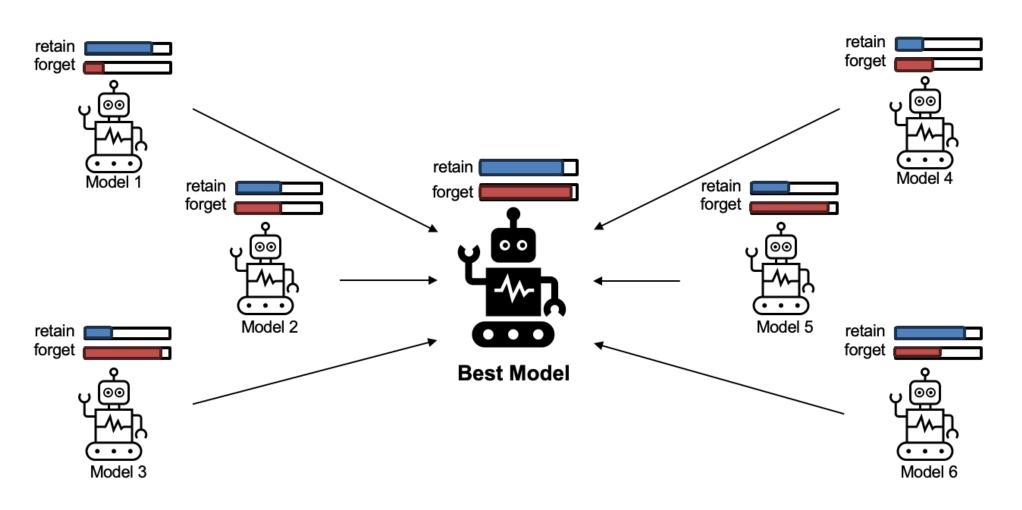
(4x4 weights)

- Elements that consistently show the same sign across task vectors are attributed to the forget set.
- Components that exhibit differing signs are considered less related to the forget set.

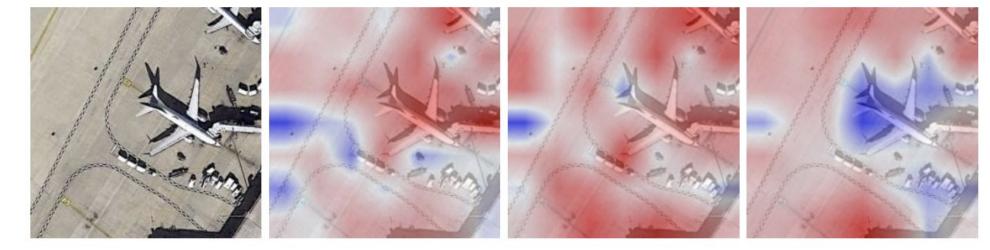
Experiment Results


Unlearning on CLIP ViT Models.

• achieves the best reduction in accuracy on the forget set.


Method	ViT-B/32		ViT-B/16		ViT-L/14		Time (sec)
	Acc $D_f(\downarrow)$	Acc $D_r(\uparrow)$	Acc $D_f(\downarrow)$	Acc $D_r(\uparrow)$	Acc $D_f(\downarrow)$	Acc D_r (†)
Pre-trained	48.13	63.33	55.49	68.32	65.19	75.54	-
Task Arithmetic							
Paper number*	24.00	60.90	21.30	65.40	19.00	72.90	-
Single Best Model [†]	23.63	60.60	20.64	64.04	19.17	72.09	-
Uniform Merge	22.50	60.55	21.51	64.60	18.10	71.91	$12_{\pm 0.1}$
Greedy Merge [‡]	23.31	60.75	21.34	64.54	17.71	71.99	$607_{\pm 2.6}$
TIES-Merging	26.21	61.08	23.78	64.72	22.70	72.41	$128_{\pm 10.1}$
MagMax	25.24	60.95	24.45	64.78	21.71	72.55	$24_{\pm 1.8}$
NegMerge (Ours)	20.76	60.36	19.24	64.54	17.32	72.08	$37_{\pm 1.2}$
Linear Task Arithmetic	;						
Paper number*	10.90	60.80	11.30	64.80	-	-	-
Single Best Model [†]	8.88	60.16	6.92	64.62	-	-	-
Uniform Merge	9.12	60.47	6.84	65.26	-	-	$19_{\pm 2.3}$
Greedy Merge [‡]	8.73	60.27	6.80	64.72	1. - -	-	$1696{\scriptstyle \pm 35.3}$
TIES-Merging	10.66	60.38	8.44	65.12	1. - -1	-	$378_{\pm 8.0}$
MagMax	11.33	60.67	8.65	65.17	-	-	$164_{\pm 2.4}$
NegMerge (Ours)	8.03	60.58	6.60	65.40	-	-	$194_{\pm 1.6}$

10% Random Data Forgetting on CIFAR-10 using ResNet-18. \circ achieves the smallest average gap of 1.07.


Methods	Used Splits	Acc $D_r(\simeq)$	Acc $D_f(\simeq)$	Acc $D_{test}(\simeq)$	$MIA(\simeq)$	Avg. $Gap(\downarrow)$					
Retrain *	retain	$100.00_{\pm 0.00}$	$94.76_{\pm 0.69}$	$94.26_{\pm 0.02}$	$12.88_{\pm 0.09}$	0.00					
Random Labeling * Influence * SalUn *	all	$\begin{array}{c} 99.67_{\pm 0.14} \\ 99.20_{\pm 0.22} \\ 99.62_{\pm 0.12} \end{array}$	$\begin{array}{c} 92.39_{\pm 0.31} \\ 98.93_{\pm 0.28} \\ 97.15_{\pm 0.43} \end{array}$	$\begin{array}{c}92.83_{\pm 0.38}\\93.20_{\pm 1.03}\\93.93_{\pm 0.29}\end{array}$	$\begin{array}{c} 37.36_{\pm 0.06} \\ 2.67_{\pm 0.01} \\ 14.39_{\pm 0.82} \end{array}$	7.15 4.06 1.15					
Finetune * <i>l</i> 1-sparse *	retain	$\begin{array}{c} 99.88_{\pm 0.08} \\ 97.74_{\pm 0.33} \end{array}$	$\begin{array}{c} 99.37_{\pm 0.55} \\ 95.81_{\pm 0.62} \end{array}$	$\begin{array}{c} 94.06_{\pm 0.27} \\ 91.59_{\pm 0.57} \end{array}$	$\begin{array}{c} 2.70 _{\pm 0.01} \\ 9.84 _{\pm 0.00} \end{array}$	3.78 2.26					
Gradient Ascent * Boundary Shrink * Boundary Expanding * Random Labeling SalUn	forget	$\begin{array}{c} 99.50 {\scriptstyle \pm 0.38} \\ 98.29 {\scriptstyle \pm 2.50} \\ 99.42 {\scriptstyle \pm 0.33} \\ 99.99 {\scriptstyle \pm 0.00} \\ 99.88 {\scriptstyle \pm 0.04} \end{array}$	$\begin{array}{c} 99.31 {\scriptstyle \pm 0.54} \\ 98.22 {\scriptstyle \pm 2.52} \\ 99.41 {\scriptstyle \pm 0.30} \\ 99.98 {\scriptstyle \pm 0.02} \\ 99.89 {\scriptstyle \pm 0.04} \end{array}$	$\begin{array}{c} 94.01_{\pm 0.47} \\ 92.69_{\pm 2.99} \\ 93.85_{\pm 1.02} \\ 95.04_{\pm 0.11} \\ 94.42_{\pm 0.05} \end{array}$	$\begin{array}{c} 1.70_{\pm 0.01} \\ 8.96_{\pm 0.13} \\ 7.47_{\pm 1.15} \\ 2.15_{\pm 1.94} \\ 9.51_{\pm 2.07} \end{array}$	4.12 2.67 2.76 4.19 2.20					
Task Arithmetic Single Best Model [†] Uniform Merge TIES-Merging MagMax NegMerge (Ours)	forget	$\begin{array}{c} 98.36 _{\pm 0.51} \\ 98.70 _{\pm 0.91} \\ 98.38 _{\pm 0.17} \\ 98.38 _{\pm 0.12} \\ 99.15 _{\pm 0.24} \end{array}$	$\begin{array}{c} 94.85 _{\pm 0.16} \\ 95.83 _{\pm 2.17} \\ 95.45 _{\pm 0.32} \\ 97.97 _{\pm 0.77} \\ 96.63 _{\pm 0.59} \end{array}$	$\begin{array}{c} 91.49_{\pm 0.80} \\ 92.36_{\pm 1.16} \\ 92.23_{\pm 0.14} \\ 91.53_{\pm 0.00} \\ 92.71_{\pm 0.39} \end{array}$	$\begin{array}{c} 10.91 _{\pm 0.72} \\ 10.14 _{\pm 2.93} \\ 9.36 _{\pm 0.31} \\ 8.45 _{\pm 2.60} \\ 12.87 _{\pm 1.29} \end{array}$	1.62 1.75 1.96 3.00 1.07					

- Effective unlearning requires the fine-tuned model to maintain high performance on the forget set without degrading performance on the retain set.
- To achieve this, merge them all instead of selecting just one.

Impact of Sign Conflicts on Unlearning: Grad-CAM

(a) Original image

(b) Original model (c) Conflict (d) Non-conflict (ours)

Conclusion

- Propose a novel machine unlearning technique, NegMerge, based on task arithmetic and model merging.
- Tested on the CLIP ViT models and the standard ResNet18 classifier, achieving SOTA across nine datasets.