PM-Jewelry: Personalized Multimodal Adaptation for Virtual Jewelry Try-On with Latent Diffusion

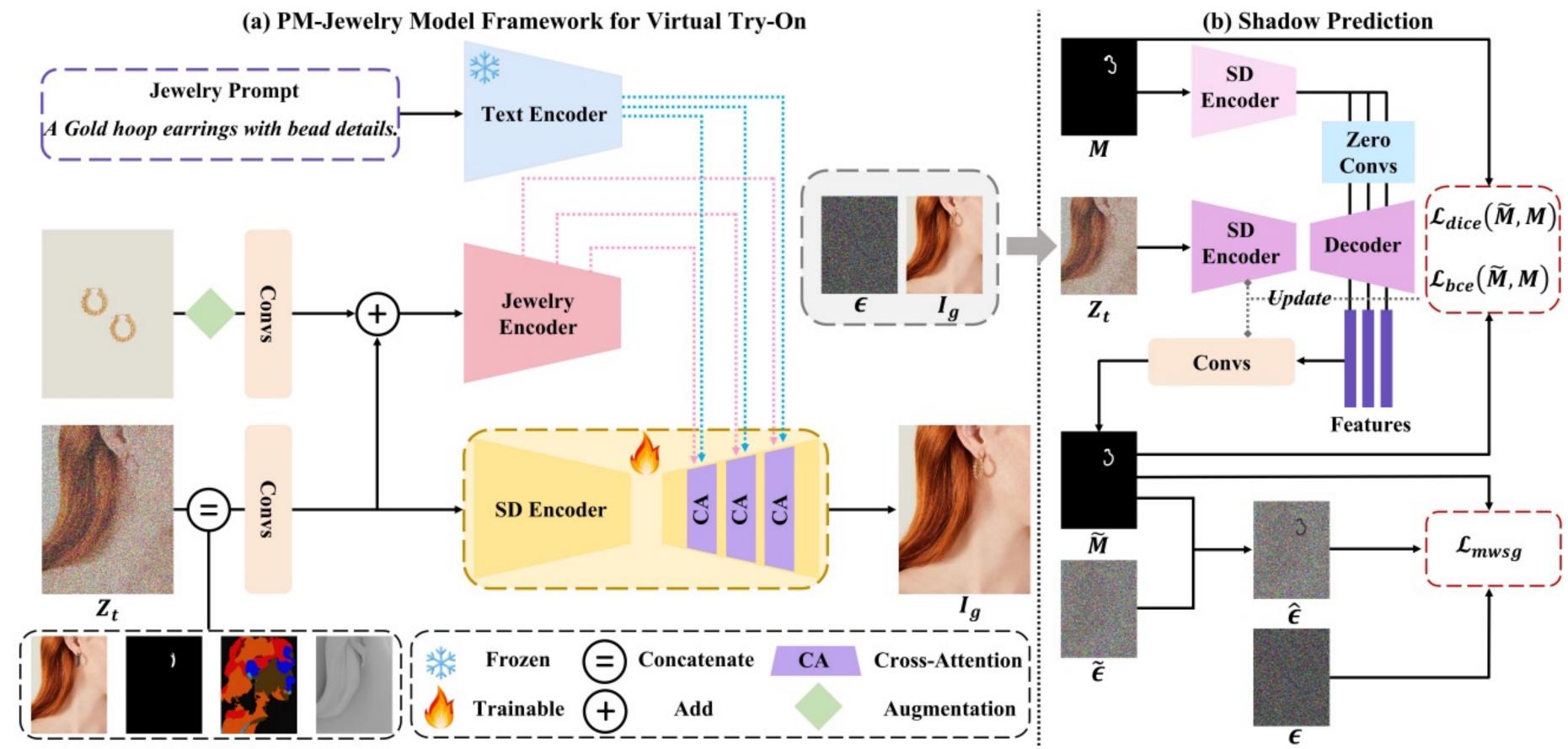
Yangfan He, Yinghui Xia, Jinfeng Wei, Tianyu Shi, Jingsong Yang* ty.shi@mail.utoronto.ca edward.yang@autoagents.ai

Introduction

Motivation and Goal

• Rapid growth of e-commerce and its transformative impact on virtual try-on (VTO) technologies.

• Unique challenges in virtual jewelry try-on (e.g., intricate details, reflective surfaces, precise alignment).


• A novel framework leveraging multimodal learning and latent diffusion models to achieve highly personalized and realistic jewelry try-on experiences.

Proposed Framework for PM-Jewelry

 Integration of latent diffusion, multimodal learning, and personalized adaptation.

•Dual-pathway network for combining image-based and latent embeddings.

Categories **Key Contributions Personalized Multimodal** Input sources Adaptation Integration of user-specific Agnostic maps attributes such as skin tone, **Dense pose** facial structure, and personal **Jewelry features** style. **Depth maps** • Enhancing realism through dual-pathway processing and

latent space optimization.

User-Centric Features

- Style customization (e.g., modern, traditional, minimalistic preferences).
- Interactive feedback loop for dynamic adjustments.

Attention-Based Latent Diffusion

 Leveraging depth maps for accurate jewelry alignment with user anatomy.

 Advanced rendering techniques for reflective surfaces and fine details.

A novel jewelry try-on dataset

• 6,157 paired images encompassing earrings, necklaces, and rings with diverse styles and fitting conditions.

Performance Metrics

• Structural Similarity Index (SSIM), Learned Perceptual Image Patch Similarity (LPIPS), and Fréchet Inception Distance (FID).

Qualitative Analysis

 Comparisons against several baselines as well as ablation studies.

Conclusion

Observations

 Integration of latent diffusion and multimodal learning for scalable, robust virtual jewelry try-on.

 PM-Jewelry represents a significant advancement in virtual jewelry try-on, offering realistic and personalized simulations.

 Significant improvements in rendering quality, alignment accuracy, and user satisfaction.

Future work

 Enhancing real-time interaction capabilities.

 Broadening applicability to diverse jewelry designs and user demographics.

 Exploring augmented reality integration for immersive experiences.

Evaluation

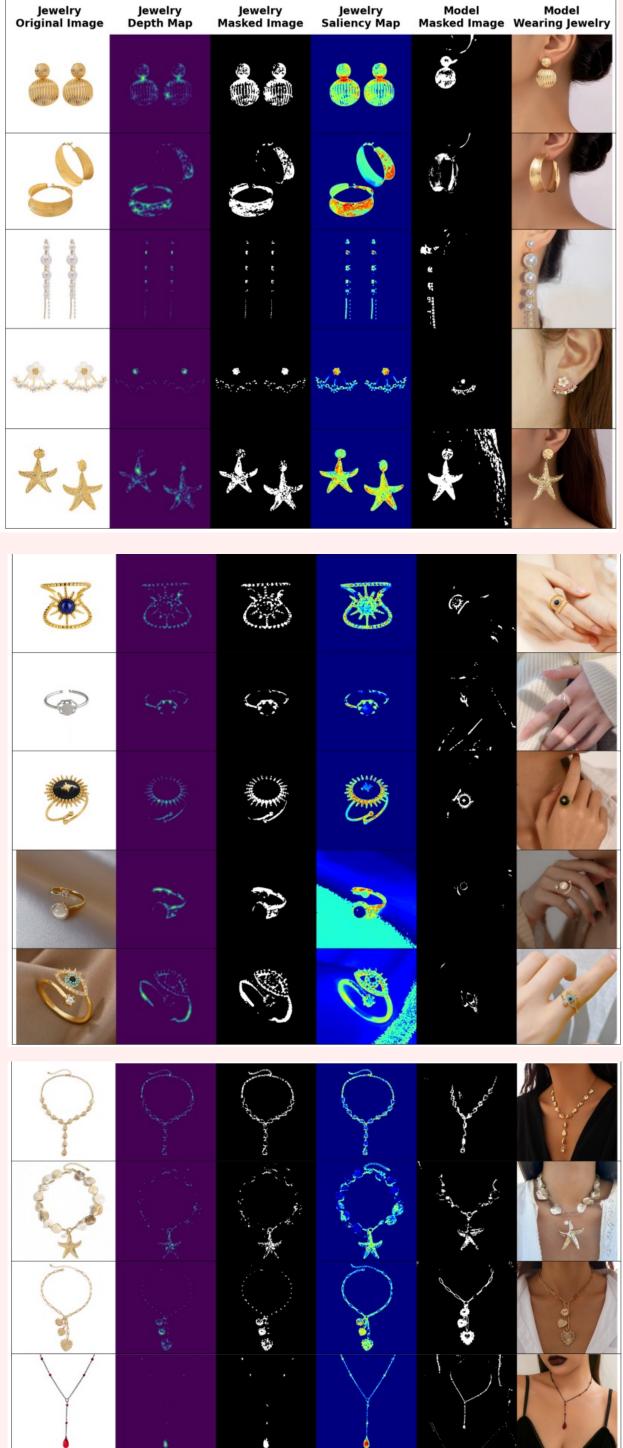
Quantitative Evaluation

 PM-Jewelry outperforms baselines in SSIM, LPIPS, and FID metrics, indicating superior structural preservation and realism.

Model	Earrings			Necklaces			Rings		
	SSIM (†)	LPIPS (\downarrow)	FID (\downarrow)	SSIM (†)	LPIPS (\downarrow)	FID (\downarrow)	SSIM (†)	LPIPS (\downarrow)	FID (↓)
Stable Diffusion v1.5 [21]	0.7135	0.1278	24.732	0.7018	0.1351	25.823	0.7092	0.1234	25.578
ControlNet [22]	0.7123	0.1292	25.176	0.7068	0.1313	26.512	0.7074	0.1247	25.981
PICTURE [23]	0.7809	0.1223	19.057	0.7607	0.1268	19.984	0.7729	0.1195	19.674
Gal4way/TPD [24]	0.6752	0.1307	28.245	0.6546	0.1419	29.887	0.6629	0.1368	28.582
StableVITON [15]	0.6704	0.1015	30.298	0.6699	0.1116	30.834	0.6718	0.1073	29.621
ComfyUI [25]	0.7942	0.1214	29.769	0.7783	0.1227	30.165	0.7847	0.1192	30.456
Ladi-VTON [12]	0.7134	0.1273	24.612	0.7064	0.1298	26.055	0.7087	0.1246	25.735
GP-VTON [8]	0.7119	0.1264	25.411	0.7046	0.1322	26.213	0.7072	0.1238	25.619
DCI-VTON [10]	0.7295	0.1259	24.831	0.7081	0.1345	26.356	0.7084	0.1211	25.945
Ours	0.8127	0.0972	13.529	0.9065	0.1003	9.805	0.8913	0.1094	10.854

Ablation Study

• Highlighting the importance of data augmentation, zero cross-attention mechanism, jewelry encoder, and text encoder in integrating features and maintaining style consistency.


(a) w/o Augmentation

(b) w/o Zero cross-attention

(c) w/o Jewelry encoder

(d) w/o Text encode

Qualitative Evaluation • Visual comparisons demonstrate the model's effectiveness in preserving jewelry details and alignment with facial features.

