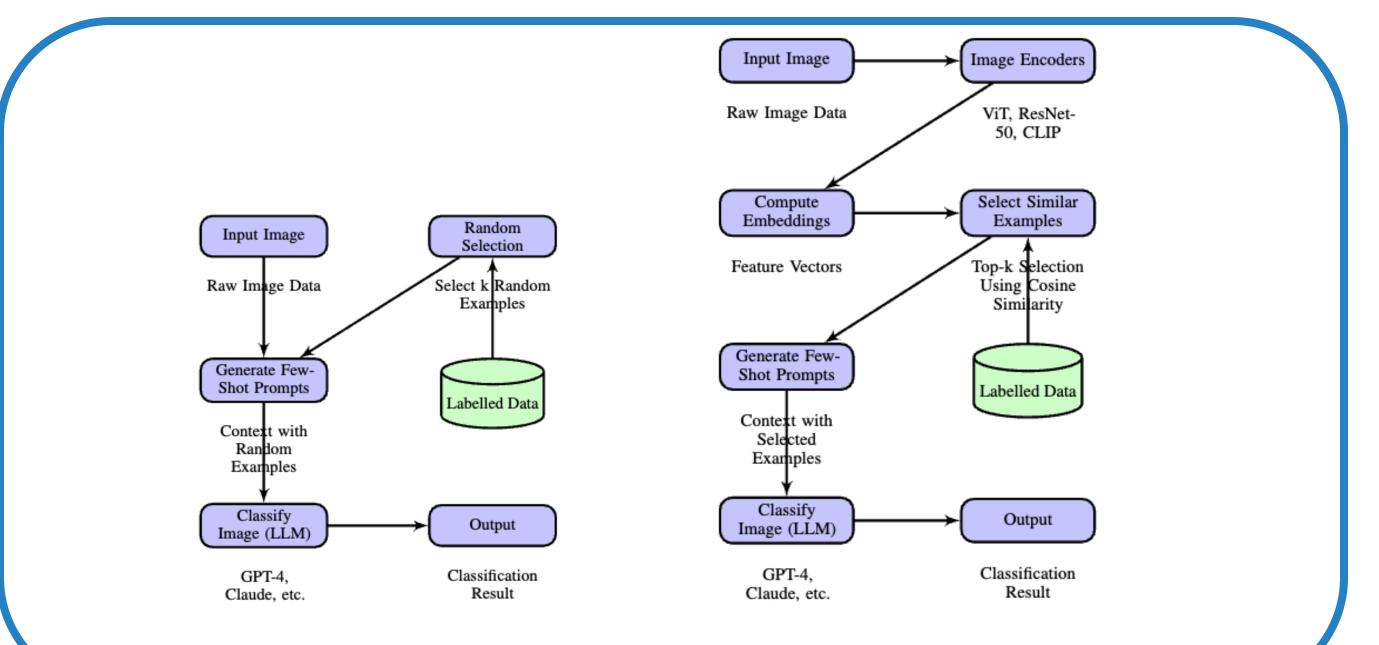


Assisted Few-Shot Learning for Vision-Language Models in Agricultural Stress Phenotype Identification

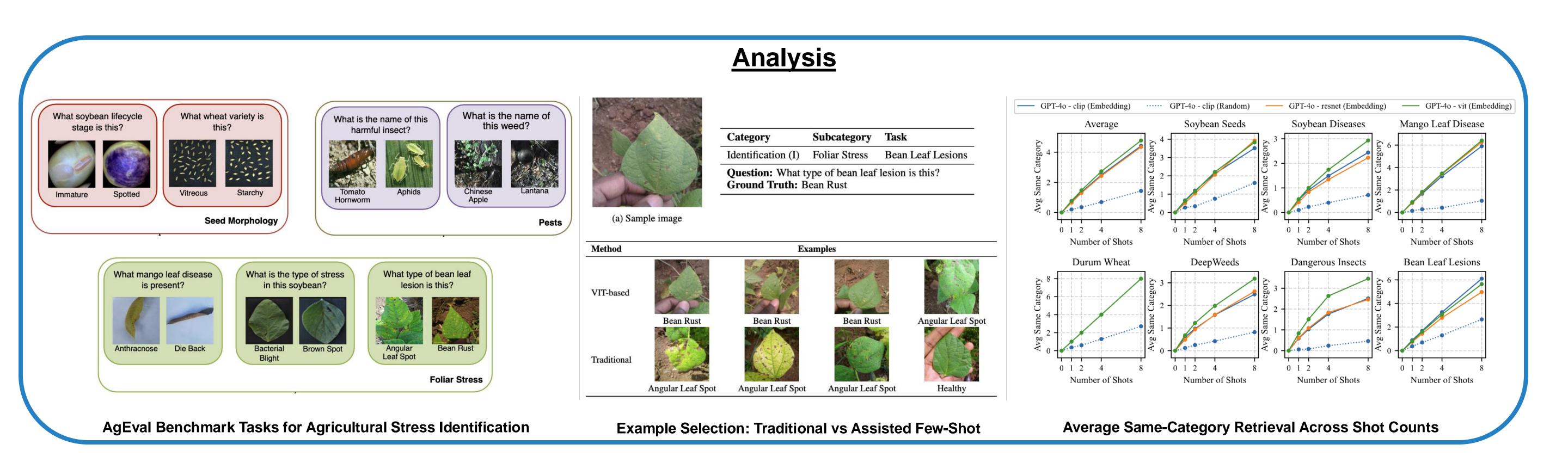
Muhammad Arbab Arshad¹, Talukder Zaki Jubery¹, Asheesh K Singh¹, Arti Singh¹, Chinmay Hegde², Baskar Ganapathysubramanian¹, Aditya Balu¹, Adarsh Krishnamurthy¹, Soumik Sarkar^{1*}

¹Iowa State University


² New York University

*Correspondence : soumiks@iastate.edu

NeurIPS 2024 Workshop on Adaptive Foundation Models: Evolving AI for Personalized and Efficient Learning


Introduction

- Addresses critical challenge of limited labeled datasets in agricultural stress phenotyping.
 - Expert annotation requires significant time and resources
 - Agricultural stress identification needs diverse, high-quality examples
 - Current vision-language models show promise with few examples
- Presents Assisted Few-Shot Learning for agricultural image classification.
 - Intelligently selects most relevant examples using image encoders
 - Optimizes performance with as few as 1-8 labeled examples
 - Enables practical deployment with minimal data requirements

Traditional Few-Shot Learning

Assisted Few-Shot Learning

Results

 ViT encoder achieves highest average F1 score (80.45%) in 8-shot scenario.

- Successfully demonstrated effectiveness of Assisted Few-Shot Learning through significant F1 score improvements (68.68% to 80.45%)
- Consistent performance gains across 6 out of 7 agricultural tasks.
 - Intelligently selects most relevant examples using image encoders
 - Optimizes performance with as few as 1-8 labeled examples
 - Enables practical deployment with minimal data requirements
- Consistent performance gains across 6 out of 7 agricultural tasks.
 - DeepWeeds: +26.47% improvement
- Mango Leaf Disease: +22.31% improvement
- Soybean tasks: +20.23% average improvement

Task	Baseline	clip	resnet	vit
Bean Leaf Lesions	88.34	91.96 (+3.62)	91.98 (+3.64)	90.06 (+1.72)
Dangerous Insects	84.21	79.33 (-4.88)	82.23 (-1.98)	81.41 (-2.80)
DeepWeeds	56.99	67.54 (+10.55)	72.26 (+15.27)	83.46 (+26.47)
Durum Wheat	97.98	100.00 (+2.02)	100.00 (+2.02)	100.00 (+2.02)
Mango Leaf Disease	76.65	98.96 (+22.31)	93.71 (+17.06)	94.31 (+17.66)
Soybean Diseases	32.43	44.88 (+12.45)	48.66 (+16.23)	52.66 (+20.23)
Soybean Seeds	44.16	57.42 (+13.26)	65.29 (+21.13)	61.26 (+17.10)
Average	68.68	77.16 (+8.48)	79.16 (+10.48)	80.45 (+11.77)

- Validated performance across multiple encoder architectures with ViT showing strongest results
- Established viable approach for agricultural stress phenotyping with limited labeled data
- Demonstrated broad applicability with improvements in 6 out of 7 agricultural tasks

Future work

- Extend methodology to smaller, resource-efficient vision-language models
- Explore additional similarity metrics beyond cosine similarity for example selection
- Apply assisted few-shot framework to broader agricultural monitoring applications

USDA National Institute of Food and Agriculture IOWA STATE UNIVERSITY

OF SCIENCE AND TECHNOLOGY

AI Institute for Resilient Agriculture (AIIRA) is supported by the National Science Foundation (NSF) and United States Department of

