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Improving convergence rate of larger models by warmstarting training from a smaller model under Chinchilla compute-optimal training.

e Scaling studies and large model trainings often do not have Scaling best found learning rate at smallest model scale using uP.
directly transferable hyperparameter settings.
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Figure source: [1]

Our Approach

Initialize the larger model training run as a scaled up continual learning over the smaller model, assuming gP-enabled training pipeline.

i S R': base — smaller model; target — larger model
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Empirical Evaluation
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