GraphText: Graph Reasoning in Text Space

Jianan Zhao, Le Zhuo, Yikang Shen, Meng Qu, Kai Liu, Michael Bronstein, Zhaocheng Zhu, Jian Tang

GraphText uses **tree** as an intermediary to bridge **structure** and **sequence**.

Interactive Graph Reasoning

Graph-syntax Tree

Structured prompt for graph reasoning.

- Feature: Node 0 has feature 0, node 1 has feature 1, node 2 has feature 2, node 3 has feature 3,
- node 4 has feature 4, node 5 has feature 5
- Label: Node 1 has label 1, node 3 has label 3, node 5 has label 5
- Edge: Node 0 connects with node 1, node 0 connects with node 2, node 1 connects with node 5, node 1 connects with node 3, node 1 connects with node 4, node 2 connects with node 5, node 3 connects with node 4 **(d)**
- LLMs understand tree: They have seen tree-based corpus, e.g. code data, webpages (DOM tree), and XML files.
- Built-in structured prompt: Hierarchical tree structure (c) v.s. structure flattened in description (d).

feat=x: X_0

feat=y: Y_1

feat=x: X_1, X_2

feat=y: Y_3, Y_5

feat=x: X_3, X_4, X_5

• Easy incorporation of graph inductive bias: Design the structure and attributes and of the graph-syntax tree.

Interactive graph reasoning in natural language.

Université

de Montréa

• Interpretability: generate and *clarify* predictions in natural language • Interactiveness: LLMs can adapt their prior inductive bias based on the human feedback.

Experiments

Setting	Model	Cora	Citeseer	Texas	Wisconsin	Cornell
	GCN	81.4	69.8	59.5	49.0	37.8
	GAT	80.8	69.4	54.1	49.0	45.9
Supervised Learning	GCNII	81.2	69.8	56.8	51.0	40.5
	GATv2	82.3	69.9	62.2	52.9	43.2
	NeighborText	26.3	13.7	5.4	9.8	21.6
	GML	38.5	28.4	10.8	23.5	21.6
	$\operatorname{GraphML}$	49.9	28.9	16.2	33.3	29.7
In-Context Learning	GraphText of+or	33.4	36.9	5.4	29.4	24.3
	GraphText of+sr	52.1	50.4	73.0	60.8	46.0
	GraphText sf+or	64.5	51.0	73.0	35.3	48.7
	${\it GraphText \ sf+sr}$	68.3	58.6	75.7	67.6	57.9
Comparisons	Δ SFT-GCN	-13.1%	-11.2%	+16.2%	+18.6%	+20.1%
	Δ Best ICL	+18.4%	+29.7%	+59.5%	+34.3%	+28.2%

SOTA node classification performance, comparable to supervised baselines

Model	Co	ra	Citeseer		
Model	Acc. %	Δ	Acc. %	Δ	
GraphText	68.3	-	58.6	-	
rev. hierarchy	68.3	-0 %	57.6	-1.7 %	
w/o struct-sem	67.8	-0.5~%	56.3	-3.9~%	
sequence	67.0	-1.3~%	53.0	-9.6~%	
set	65.9	-2.4 %	56.4	-3.8 $\%$	

Ablations of graph-syntax trees

UNIVERSITY OF

Paper

