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GraphText uses tree as an intermediary to bridge structure and sequence.
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Structured prompt for graph reasoning. Interactive graph reasoning in natural language.
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* Interpretability: generate and clarify predictions in natural language
* Interactiveness: LLMs can adapt their prior inductive bias based on
the human feedback.

connects with node 4 (d)

* Built-in structured prompt: Hierarchical tree structure (c) v.s.
structure flattened in description (d).

« Easy incorporation of graph inductive bias: Design the structure
and attributes and of the graph-syntax tree.

Experiments
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GCN 81.4 69.8 59.5 49.0 37.8 A Ist-hop: [A] feature: [0] [A,B, 0,1,

GAT 80.8 69.4 54.1 49.0 45.9 [T c @H 2nd-hop: [B] Ist-hop: 2,3,2]
Text Attribut feature: label: [A]
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In-Context Learning GraphText of+or 33.4 36.9 5.4 294 24.3
GraphText of+sr  52.1 50.4 73.0 60.8 46.0 Model Cora Citeseer
GraphText sf+or 64.5 51.0 73.0 35.3 48.7 Acc. % A Ace. % A
GraphText sf4-sr 68.3 58.6 75.7 67.6 57.9 GraphText 68.3 _ 58.6

A SFT-GCN -13.1%  -11.2%  +16.2% +18.6% +20.1% rev. hierarchy 68.3 -0 % 576  -1.7%

A Best ICL +18.4%  4+29.7% +59.5%  +34.3% = +28.2% w/o struct-sem  67.8  -05% 563 -3.9%
sequence 670 -13% 53.0 -9.6 %

set 65.9 24 % 56.4 -3.8 %

Supervised Learning

Comparisons

SOTA node classification performance, comparable to supervised baselines

Ablations of graph-syntax trees
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Reasoning

Model Interaction Accuracy
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GraphText surpasses supervised baselines when labels are few Quantitative interactive graph reasoning performance on Cora node #2188
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