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Experiments

Quantitative interactive graph reasoning performance on Cora node #2188

• LLMs understand tree: They have seen tree-based corpus, e.g. 
code data, webpages (DOM tree), and XML files. 

• Built-in structured prompt: Hierarchical tree structure (c) v.s. 
structure flattened in description (d).

• Easy incorporation of graph inductive bias: Design the structure 
and attributes and of the graph-syntax tree.

Structured prompt for graph reasoning.
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Figure 1: Comparison between (a) the GNN framework and (b) the proposed GraphText framework.
For di!erent graphs G1 and G2, di!erent GNNs ω1 ω2 are trained to make a graph-specific output
prediction in continuous form. In contrast, GraphText encodes the graph information to text sequences

T
(1)
in and T

(2)
in , and generates text reasoning and prediction T

(1)
out and T

(2)
out with a graph-shared LLM ε.

GraphText leverages a pre-trained LLM to perform training-free graph reasoning and enables human and
AI interaction for graph reasoning in natural language. (c) An example of the GraphText framework
that classifies node 0: Given a graph, GraphText constructs a graph-syntax tree that contains both
node features (e.g. feature and label) and relationships (e.g. center-node, 1st-hop, and 2nd-hop). Then,
GraphText traverses the graph-syntax tree to obtain a sequential text, i.e. graph prompt, and let LLM
perform graph reasoning in text space.

context learning, outperforming the best ICL base-093
line by an average of 34.0%. Remarkably, even094
without training on graph data, GraphText can de-095
liver performance on par with, or even surpass, su-096
pervised graph neural networks through in-context097
learning. To our best knowledge, this is the first098
time that a language model with ICL outperforms099
supervised GNN. This highlights the vast potential100
of foundation models in the realm of graph ma-101
chine learning. Third, GraphText fosters interac-102
tive graph reasoning: With its capacity to gen-103
erate and explain predictions in natural language,104
humans can directly engage with GraphText. As105
shown in Figure 2 (b), through interactions with106
humans and other LLMs, GraphText refines its107
graph reasoning capabilities.108

2 Methodology109

In this section, we present how GraphText per-110
forms graph reasoning in text space. Out of the111
three fundamental problems of graph ML (graph112
classification, node classification, and link predic-113
tion), we take node classification as an example114
to introduce our idea. We however note that our115
discussion applies to other graph tasks.116

2.1 The GraphText Framework117

Let us be given an attributed graph G = (V, E,X)118
with nodes V and edges E, whose structure is rep-119
resented as the |V |→ |V | adjacency matrix A and120
node features as the |V | → d feature matrix X.121
Given a subset L ↑ V of labeled nodes with la-122
bels YL, the goal of node classification is to predict123

the labels YU of the unlabeled nodes U = V \ L. 124
Graph Neural Networks (GNNs) are the standard 125
architecture for such problems. As shown in Fig- 126
ure 1 (a), a GNN directly learns a parametric map 127

ŷi = fGNN(G; ωG)i (1) 128

between the input graph G ↓ G and the output 129
labels Ŷ ↓ Y, assigning to each node i its predicted 130
label ŷi. The training of GNN attempts to find 131
parameters ωG such that ŷi ↔ yi on the training 132
set. Note that standard GNNs are graph-specific 133
functions, i.e. fGNN(·; ωG) : G ↗↘ Ŷ , which do not 134
generalize to other graphs, since other graphs G

→ ↓ 135
G define distinct distributions of Y

→, A→, and X →, or 136
even di!erent types of features such as continuous, 137
categorical, or text features. 138

To solve the generalization problem mentioned 139
above, we propose to perform graph reasoning as a 140
text-to-text problem (Ra!el et al., 2020), as shown 141
in Figure 1 (b). Inspired by prompt tuning (Brown 142
et al., 2020; Liu et al., 2023), we construct two 143
graph-specific maps to form the input and output 144
space of a text-to-text problem: a map g : G ↗↘ Tin 145
that maps the graph input to text space, and a 146
map h : Tout ↗↘ Ỹ that maps the output of LLM 147
to label predictions Ỹ . In this way, we can use a 148
generative large language model fLLM to perform 149
graph reasoning as 150

ỹi = h(fLLM(g(G)i; ε)) (2) 151

where g(G)i = Tin[i] denotes the text sequence rep- 152
resenting node i. Di!erent from GNNs, fLLM(·; ε) : 153
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pseudo labels:
    center-node: 
        [F]
    ppr: 
        [A, A, A, A]
topic: 
        A

Center-nodes are vital. 
Hence, the answer is G.

 

pseudo labels:
    center-node: 
        [B]
    ppr: 
        [B, B, B, B]
topic: 
        B

 

pseudo labels:
    center-node: 
        [G]
    ppr: 
        [G, G, G, G]
topic: 
        G

 

pseudo labels:
    center-node: 
        [G]
    ppr: 
        [A, G, A, E]
topic: 
        ?

Classify the papers’ topics.
Here are a few examples:

Classify the paper below: 
               

   

 

PPR labels are ranked by 
importance, with the first 
one being the most crucial. 
Re-evaluate your prediction

Ah, I see. Based on the first 
PPR label , the answer is A.

The answer is either A 
or G. I can’t predict a 
reasonable answer.

Updated Graph Prior

Refusion

Confusion

While PPR labels are 
crucial, I still believe in 
center-node labels.

The first PPR labels 
appears to be the best 
prediction.

Counting PPR labels is 
more robust than using 
center-node labels

(b)(a) (c)

Previous Graph Prior

Figure 2: (a) Few-shot demonstrations (blue) and the target node #2188 (green) to predict on Cora.
(b) An illustration of how human interaction changes the graph reasoning of an LLM, where the LLM
previously has the prior that the center-node is vital. (c) Behaviors of LLMs after given demonstra-
tions/human interaction: update graph prior to bias more on PPR (personalized pagerank); leads to
confusion or refusion. Details are discussed in Section 4.2.

T → T is a graph-shared function, where both154
input and output are in text space, i.e. Tin, Tout ↑155
T , which not only activates of parametric knowl-156
edge encoded in the model fLLM(·; ω), but also157
enables natural-language-interactions between hu-158
man and AI agents to facilitate graph reasoning.159

Specifically, as node classification, link predic-160
tion and graph classification are essentially clas-161
sification tasks, we can naturally formulate these162
graph reasoning tasks as multi-choice QA prob-163
lem (Robinson and Wingate, 2023) and design h164
as the map from predicted choice Tout ↑ T to the165
corresponding prediction Ỹ . However, the design166
of g that maps the structural graph information167
into the text space of natural language is still a168
non-trivial problem.169

The primary challenge in converting graph data170
to language lies in handling its relational struc-171
ture, which fundamentally deviates from the one-172
dimensional sequential nature of text data. In-173
spired by the syntax trees in computation linguis-174
tics which describe the syntactic structure and175
semantics between nodes (words), we introduce176
graph-syntax trees as a bridge between relational177
and sequential data. The traversal of such a tree178
produces a sentence in natural language, which is179
fed to LLM for graph reasoning.180

Specifically, as shown in Figure 1 (c), we com-181
pose a graph-syntax tree consisting of two types of182
nodes: leaf nodes that contain the graph features,183
and the internal nodes that describe the relational184
semantics of the leaf nodes. Next, we describe how185
to extract graph information as feature and rela-186
tional information in Section 2.2, and how to build187
a graph-syntax tree in Section 2.3.188

2.2 Feature and Relation Extraction for 189
Graph-Syntax Tree 190

In this section, we discuss how to prepare the graph 191
information consisting of feature and relation infor- 192
mation to serve as the leaf and internal nodes for 193
a graph-syntax tree. For text features that serve 194
as leaf nodes in graph-syntax tree, GraphText con- 195
structs a text feature set F ↑ T for a graph G ↑ G 196
(with or without text features) composed of multi- 197
ple types of features for each node, e.g. feature and 198
label, in natural language. Specifically, for each 199
node vi and feature type m, we construct a text 200
sequence Fm[i] in natural language: 201

Fm[i] = {t1, t2, · · · tlm}, Fm[i] ↑ T , (3) 202

where the sequence is of length lm. Each text 203
feature Fm can be derived from either sequential 204
text features or continuous features. For text- 205
attributed graphs, the text features can be directly 206
added to the text features F . For example, we can 207
directly add the text sequences of “title” and “ab- 208
stract” into F for citation graphs. For continuous 209
features, e.g. the raw feature X or other graph em- 210
beddings, we propose to use discretization meth- 211
ods, e.g. clustering, to transform the continuous 212
feature into a discrete space and then derive se- 213
quential data from it. For simplicity, we use the 214
cluster index of K-means to generate a sequence of 215
length 1 for all continuous features as K-means is 216
e!ective in our experiments. 217

For relational information that serves as inter- 218
nal nodes in a graph-syntax tree, GraphText de- 219
rives a set of matrices R where each Rn ↑ R is 220
a |V |↓ |V | matrix, depicting one type of relation- 221
ship between nodes. Choices of Rn may be the 222
original graph (Kipf and Welling, 2017), high-order 223
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Interactive graph reasoning in natural language.

• Interpretability: generate and clarify predictions in natural language
• Interactiveness: LLMs can adapt their prior inductive bias based on 

the human feedback.

Table 1: Node classification results (accuracy %). ! GCN and ! Best ICL denotes the aboslute perfor-
mance gain of GraphText over GCN and ICL baselines, respectively.

Setting Model Cora Citeseer Texas Wisconsin Cornell

Supervised Learning

GCN 81.4 69.8 59.5 49.0 37.8
GAT 80.8 69.4 54.1 49.0 45.9

GCNII 81.2 69.8 56.8 51.0 40.5
GATv2 82.3 69.9 62.2 52.9 43.2

In-Context Learning

NeighborText 26.3 13.7 5.4 9.8 21.6
GML 38.5 28.4 10.8 23.5 21.6

GraphML 49.9 28.9 16.2 33.3 29.7
GraphText of+or 33.4 36.9 5.4 29.4 24.3
GraphText of+sr 52.1 50.4 73.0 60.8 46.0
GraphText sf+or 64.5 51.0 73.0 35.3 48.7
GraphText sf+sr 68.3 58.6 75.7 67.6 57.9

Comparisons
! SFT-GCN -13.1% -11.2% +16.2% +18.6% +20.1%
! Best ICL +18.4% +29.7% +59.5% +34.3% +28.2%

Figure 3: Few-shot in-context learning node classification accuracy. We perform 1, 3, 5, 10, 15, and
20-shot node classification on Citeseer and Texas datasets.

and relations leads to significant performance im-447
provements across all datasets. Notably, Graph-448
Text sf+sr, integrating these elements, sets a new449
benchmark in graph in-context learning, outper-450
forming the best existing ICL baselines by an av-451
erage of 34.0%. Impressively, GraphText occasion-452
ally exceeds supervised learning GNN base-453
lines through in-context learning, especially in454
scenarios of low label rates (as indicated in Fig-455
ure 3) and within heterophilic datasets. This su-456
perior performance is attributed to GraphText’s457
ability to uncouple depth and scope in graph rea-458
soning (Zeng et al., 2021), unlike traditional GNNs.459
The remarkable e”cacy of GraphText in training-460
free graph reasoning underscores the immense po-461
tential of LLMs in the realm of graph learning.462

4.2 Interpretable and Interactive Graph463
Reasoning464

In this section, we illustrate that GraphText fa-465
cilitates e#ective interactive graph reasoning:466
through its ability to generate and clarify predic-467
tions in natural language, both humans and LLMs468
can directly interact with GraphText.469

To illustrate this concept, we will use Cora node 470
#2188 as an example. Figure 2 (a) shows two types 471
of text features we use: the center-node pseudo la- 472
bels and the PPR (Personalized PageRank) pseudo 473
label sequence, where the first PPR neighbor de- 474
notes the most important label prediction. Upon 475
examining the demonstrations (marked in blue), 476
it becomes apparent that the PPR pseudo-labels 477
are more robust than center-node for label pre- 478
diction. However, it is commonly believed that 479
center-nodes are the most important for label pre- 480
diction. Hence, this is a challenging example for 481
LLM to update their previous preference of center- 482
node-based prediction to PPR-based graph reason- 483
ing. We leverage GraphText with ChatGPT and 484
GPT-4 and summarize theis reasoning processes 485
and results are illustrated in Figure 2 and Table 2 486
respectively, from which we draw several key in- 487
sights: 488

1. LLMs inherently possess the knowledge 489
and inductive bias toward graph reasoning. 490
Specifically, both ChatGPT and GPT-4 acknowl- 491
edge the importance of center-nodes and some- 492
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SOTA node classification performance, comparable to supervised baselines

GraphText surpasses supervised baselines when labels are few

Table 2: Interactive graph reasoning results (accuracy %) on Cora (node # 2188). The table showcases the
performance of GPT-4 and ChatGPT before and after human interactions with 15 times of evaluation.
The reasoning patterns include PPR, Center-node, and instances where the model was Confused to
respond or Refused (Conf./Ref.) to make their reasoning/prediction. See Figure 2 (c) and Appendix C
for details.

Model Interaction Accuracy
Reasoning

PPR Center-node Conf./Ref.

GPT-4
Before 73.3 73.3 26.7 0
After 100 (+26.7) 100 0 0

ChatGPT
Before 26.7 26.7 53.3 20.0
After 63.6 (+36.9) 72.7 18.2 9.1

Figure 4: Ablations of graph-syntax trees. (a) An example graph. (b) GraphText prompt text (the full
example can be found in Figure 1). (c-f) prompts text of di!erent tree designs.

times make predictions based on center-node la-493
bels. ChatGPT exhibits reasoning with the center-494
node bias 53.3% of the time, while GPT-4 does so495
at a rate of 26.7%.496

2. LLMs can update their prior induc-497
tive bias based on demonstrations. Through498
in-context learning, GraphText can recalibrate499
their bias and make more accurate predictions.500
Our observations indicate that GPT-4 significantly501
outperforms ChatGPT, achieving an accuracy of502
73.3%, markedly superior to ChatGPT’s 26.7%.503

3. LLMs can adapt their prior induc-504
tive bias based on human feedback. Fig-505
ure 2 (b) provides an illustrative example, with506
a detailed reasoning of LLM can be found in Ap-507
pendix C. Specifically, after a human interaction508
that reminds LLM of what PPR is and reevaluate509
the prediction, GPT-4 shows remarkable adapt-510
ability, achieving an impeccable accuracy of 100%511
and adhering to the PPR logic. Meanwhile, Chat-512
GPT also enhances its performance notably (gain-513
ing 36.9% in accuracy), but occasionally maintains514
its antecedent biases.515

In summary, through graph reasoning in natu-516
ral language, GraphText can e!ectively leverage517
its pre-trained knowledge to engage in graph rea-518
soning and, crucially, adapt its existing knowledge519
through demonstrations or external feedback.520

Table 3: Ablations of GraphText on Cora and Cite-
seer.

Model
Cora Citeseer

Acc. % ” Acc. % ”

GraphText 68.3 - 58.6 -
rev. hierarchy 68.3 -0 % 57.6 -1.7 %
w/o struct-sem 67.8 -0.5 % 56.3 -3.9 %
sequence 67.0 -1.3 % 53.0 -9.6 %
set 65.9 -2.4 % 56.4 -3.8 %

4.3 Ablation Studies on Graph-syntax 521
Trees 522

The graph-syntax tree serves as the core design 523
of GraphText, transforming a graph into a one- 524
dimensional natural language sequence. Within 525
GraphText, the text feature and relational infor- 526
mation of a graph is initially formulated, followed 527
by the construction of a graph-syntax tree. This 528
section delves into the ablations of various methods 529
for building graph-syntax trees. 530

As shown in Figure 4, besides the proposed 531
GraphText method for constructing a graph- 532
syntax tree, we present four ablation types: (1) 533
Reverse hierarchy (denoted as rev. hierarchy 534
in Figure 4 (c): The tree hierarchy is inverted, 535
positioning the relationship type at the top and 536
the text feature type at the bottom. (2) With- 537
out structure semantics (denoted as w/o struct- 538
sem in Figure 4 (d)): The internal nodes of the 539
graph-syntax tree are eliminated, losing the struc- 540
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performance of GPT-4 and ChatGPT before and after human interactions with 15 times of evaluation.
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Model Interaction Accuracy
Reasoning

PPR Center-node Conf./Ref.

GPT-4
Before 73.3 73.3 26.7 0
After 100 (+26.7) 100 0 0

ChatGPT
Before 26.7 26.7 53.3 20.0
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Figure 4: Ablations of graph-syntax trees. (a) An example graph. (b) GraphText prompt text (the full
example can be found in Figure 1). (c-f) prompts text of di!erent tree designs.

times make predictions based on center-node la-493
bels. ChatGPT exhibits reasoning with the center-494
node bias 53.3% of the time, while GPT-4 does so495
at a rate of 26.7%.496

2. LLMs can update their prior induc-497
tive bias based on demonstrations. Through498
in-context learning, GraphText can recalibrate499
their bias and make more accurate predictions.500
Our observations indicate that GPT-4 significantly501
outperforms ChatGPT, achieving an accuracy of502
73.3%, markedly superior to ChatGPT’s 26.7%.503

3. LLMs can adapt their prior induc-504
tive bias based on human feedback. Fig-505
ure 2 (b) provides an illustrative example, with506
a detailed reasoning of LLM can be found in Ap-507
pendix C. Specifically, after a human interaction508
that reminds LLM of what PPR is and reevaluate509
the prediction, GPT-4 shows remarkable adapt-510
ability, achieving an impeccable accuracy of 100%511
and adhering to the PPR logic. Meanwhile, Chat-512
GPT also enhances its performance notably (gain-513
ing 36.9% in accuracy), but occasionally maintains514
its antecedent biases.515

In summary, through graph reasoning in natu-516
ral language, GraphText can e!ectively leverage517
its pre-trained knowledge to engage in graph rea-518
soning and, crucially, adapt its existing knowledge519
through demonstrations or external feedback.520

Table 3: Ablations of GraphText on Cora and Cite-
seer.
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set 65.9 -2.4 % 56.4 -3.8 %
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