Towards Robust and Cost-Efficient Knowledge Unlearning for Large Language models

Sungmin Cha^{1*} Sungjun Cho^{2*} Dasol Hwang³ Moontae Lee^{3,4}

¹New York University ²University of Wisconsin-Madison

³LG AI Research, ⁴ University of Illinois at Chicago

sungmin.cha@nyu.edu, sungjuncho@cs.wisc.edu, {dasol.hwang, moontae.lee}@lgresearch.ai

Ò

•

Arxiv Paper

Introduction The unlearning for LLMs **Default LoRA Initialization** Machine Unlearning for LLMs Please remove my data! Pretrained Retain set \mathcal{D}_r Weight $W \in \mathbb{R}^{d \times k}$ Forget set \mathcal{D}_f Dataset $\mathcal{D} = \mathcal{D}_f \cup \mathcal{D}_r$ Pretrained LLM Unlearned LLM Fisher-weighted Initialization (FILA) $\min_{\boldsymbol{B} \in \mathbb{R}^{d \times r}} \left\| \operatorname{diag} \left(\widehat{\boldsymbol{F}}_{\boldsymbol{W}}^{\operatorname{rel}} \mathbb{1} \right)^{1/2} (\boldsymbol{W} - \boldsymbol{B} \boldsymbol{A}) \right\|$ Gradient Ascent (GA) vs. Inverted Hinge Loss (IHL) Query: Did you put your name in the Goblet of Fire, $A \in \mathbb{R}^{r \times k}$ $W - B^*A^*$ Harry Harn $\in \mathbb{R}^{d \times k}$ $^* \in \mathbb{R}^{r imes k}$ $\mathcal{L}_{\text{IHL}} = 1 + p_{\theta}(x_t | x_{< t}) - \max_{v \neq x_t} (p_{\theta}(v | x_{< t}))$ $\mathcal{L}_{\rm GA} = p_{\theta}(x_t | x_{< t})$

LLM pretraining on large amounts of data causes privacy concerns (e.g., Personally Identifiable Information can be easily extracted from LLMs)

The contributions of our paper

Proposed Method

$$\mathcal{L}_{\text{IHL}}(\boldsymbol{x}) = 1 + p_{\theta}(x_t | x_{< t}) - \max_{v \neq x_t}(p_{\theta}(v | x_{< t}))$$

$$\frac{\partial \mathcal{L}_{\text{IHL}}(\boldsymbol{x})}{\partial y_{t}^{(v)}} = \begin{cases} p_{\theta}(x_{t}|x_{$$

- ✓ The advantages of IHL
 - 1. Mitigating gradient spread
 - 2. Bounded loss
 - 3. Preventing the degradation of generative performance
- Fisher-weighted Initialization of Low-Rank Adapters (FILA)
 - Fisher information $F_{ heta}$

$$\boldsymbol{F}_{\theta}(\mathcal{D}) = \mathbb{E}_{\mathcal{D}}\left[\left(\frac{\partial}{\partial \theta} \log p_{\theta}(\mathcal{D}|\theta)\right)^{2}\right] \approx \frac{1}{|\mathcal{D}|} \sum_{\boldsymbol{x} \in \mathcal{D}} \left(\frac{\partial}{\partial \theta} \mathcal{L}_{\mathrm{LM}}(\boldsymbol{x};\theta)\right)^{2} \eqqcolon \hat{\boldsymbol{F}}_{\theta}(\mathcal{D}),$$

- We point out the limitations of Gradient Ascent and propose Inverted Hinge Loss (IHL) for robust unlearning
- 2. We devise Fisher-weighted Initialization for costefficient unlearning under LoRA

Compute cost for unlearn. vs. post-unlearn. performances

Preliminaries

• Exact unlearning

- Retrain LLM from scratch by filtering sensitive data
- ✓ Highly resource-intensive
- Approximate unlearning
 - Removing knowledge of specific data instances without retraining
 - ✓ Major Approach: Finetuning LLMs using Gradient Ascent (GA)
 - Unstable optimization (unbounded loss) & high cost
- Gradient Ascent (GA):

$$\mathcal{L}_{\text{GA}}(\boldsymbol{x}) = -\sum_{t=1}^{T} \log(p_{\theta}(x_t | x_{< t}))$$

- ✓ Relative importance $\hat{F}_{W}^{rel} \coloneqq \hat{F}_{W}^{f} / \hat{F}_{W}^{r}$ to identify parameters important to D_{f} (forget set) but not D_{r} (retain set)
- Use $\hat{F}^{
 m rel}_{m W}$ to initialize LoRA adapters to accelerate unlearning

$$\min_{ \epsilon \mathbb{R}^{r imes k}, oldsymbol{B} \in \mathbb{R}^{d imes r}} \sum_{i,j} ig([\hat{oldsymbol{F}}_{oldsymbol{W}}^{ ext{rel}}]_{i,j} (oldsymbol{W} - oldsymbol{B}oldsymbol{A})_{i,j} ig)^2$$

Final loss function for LLM unlearning

$$\mathop{ ext{minimize}}_{ heta_{ ext{FILA}}} \sum_{oldsymbol{x}_r \in \mathcal{D}_f, oldsymbol{x}_f \in \mathcal{D}_r} \mathcal{L}_{ ext{IHL}}(oldsymbol{x}_f) + \mathcal{L}_{ ext{LM}}(oldsymbol{x}_r)$$

where $\theta_{\text{FILA}} = \{A_{\ell}^*, B_{\ell}^*\}_{\ell=1}^L$ is the FILA-initialized LoRA weights

Experimental Result

Training Data Extraction Challenges (TDEC) dataset

Unlearning criterion Measures for retaining knowledge

Model	Method	Params. (%)↓	Epochs↓	EL ₁₀ (%)↓	MA (%)↓	Reasoning (Acc)↑	Dialogue (F1)↑	Pile (PPL)↓
GPT-Neo 125M	Before	-	-	30.9	77.4	43.4	9.4	17.8
	GA	100.0	17.2	1.0	27.4	39.9	2.6	577.8
	GD		4.6	0.7	24.9	42.4	5.9	54.2
	LoRA]	8.6	0.3	20.6	40.8	2.5	129.4
	+ IHL	1.6	11.4	0.4	22.7	41.9	6.0	32.9
	+ FILA		6.0	0.3	23.9	42.2	10.1	24.0
	Before	-	-	67.6	92.2	49.8	11.5	11.5
	GA	100.0	13.8	1.9	30.4	49.7	8.5	15.8
GPT-Neo	GD	100.0	12.8	2.2	30.9	48.4	12.7	10.8
1.3B	LoRA		19.3	1.7	31.4	45.0	9.7	31.8
	+ IHL	0.8	20.0	1.7	44.6	47.1	10.2	14.9
	+ FILA		13.0	0.5	29.6	48.3	12.1	14.7
GPT-Neo	Before	-	-	70.4	93.4	52.3	11.5	10.4
	GA	100.0	10.8	1.6	31.0	51.9	11.1	17.9
	GD		8.0	0.7	28.3	44.0	12.7	17.9
2.7B	LoRA		14.0	0.1	20.4	45.9	6.7	61.1
	+ IHL	0.7	17.8	0.0	26.7	49.6	8.5	22.2
	+ FILA		10.3	0.1	28.5	49.6	10.7	16.0

- $\overline{t=1}$
- Low-rank Adaptation (LoRA):

 $(W + \Delta W)x = Wx + BAx$

Proposed Method

- The analysis of GA
 - ✓ The derivative of GA

$$\frac{\partial \log \left(p_{\theta}(x_t | x_{< t}) \right)}{\partial y_t^{(v)}} = \begin{cases} 1 - p_{\theta}(x_t | x_{< t}) \\ -p_{\theta}(v | x_{< t}) \end{cases}$$

- \checkmark The limitations of GA
 - **1. Gradient spread**: reducing the score of the true token while increasing the scores of other tokens
 - 2. Unbounded loss: maximizing the cross-entropy loss
 - 3. Degradation of generative performance:

causing uniform gradient updates to all sequences

Task of Fictitious Unlearning (TOFU)

