Enhancing Multi-Agent Multi-Modal Collaboration with Fine-Grained Reward Modeling

Qian Yang^{1,2} Weixiang Yan³ Aishwarya Agrawal^{1,2,4} Contact: qian.yang@mila.quebec

¹ Mila - Québec Al Institute ² Université de Montréal

³University of California, Santa Barbara ⁴Canada CIFAR AI Chair

Motivation

- Multi-agent collaboration helps solve complex tasks:
 - LLMs: Decomposer agent for task decomposition.
 - MLLMs: Answerer agent for task solving.
- Pre-decomposition: Fails to incorporate

Automatic construction of paired preference dataset:

Method

- Sampling sub-questions generated by the decomposer agent.
- \succ Using the MLLM to answer each sub-question.
- Using the MLLM to answer the main question with each sub-QA pair as additional context.
- Constructing preference pairs by comparing answer confidence based on different sub-QA

Interactive decomposition with
coarse reward: Dynamically refines
sub-questions but fails to incentivize
meaningful and efficient ones.

pairs. Pair 1 Main Question Which pair of magnetic has stronger force? Pair 2 S N Main Question Are the magnets in each pair Probability: Yes Which pair of magnetic attracted? 60% has stronger force? Probability Are the magnets in each pair Yes 50% same size and shape. Decomposer Answerer Paired **Preference Sample Probability**: Are the magnets face each Yes other in opposite directions? 75% Probability of **Sampled Sub-Question List Sub-Answer List Correct Answer** Finetune the decomposer agent on preference dataset using DPO: $\mathcal{L}_{\text{DPO}}(\pi_{\theta}; \pi_{\text{ref}}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma \left(\beta \log \frac{\pi_{\theta}(y_w \mid x)}{\pi_{\text{ref}}(y_w \mid x)} - \beta \log \frac{\pi_{\theta}(y_l \mid x)}{\pi_{\text{ref}}(y_l \mid x)} \right) \right]$

Experiments

- Implement Details:
 - Decomposer Agent: OpenHermes-2.5-Mistral-7B.
 - Candidate MLLM: Idefics2-8B.
- Pre-decomposition performs comparable to interactive decomposition w/o tuning.
- Our method (Line 9) ranks 1st in the i.i.d. setting and 1st/2nd on 2 out of 3 datasets in the o.o.d. setting. It

achieves the highest mean performance, matching that of SFT with coarse reward.

	Model	$\mathbf{SNLI}\text{-}\mathbf{VE}^{\dagger}$	VCR	Winoground	MathVista	Mean
1	Base MLLM	39.3	62.3	50.5	48.0	50.0
2	Base MLLM + Sample	39.5	62.5	49.3	48.2	49.9
3	Base MLLM + Chain-of-Thought	43.6	63.0	49.3	47.2	50.8
4	Base MLLM + Chain-of-Thought + Sample	44.3	62.1	49.0	48.1	50.9
5	Pre-Decomposition	53.0	64.0	53.5	49.0	54.9
	Interactive Decomposition					
6	Interactive Decomposition	54.1	61.1	55.8	48.4	54.9
7	$\mathbf{SFT}_{VCR_{7K}+SNLI_{13K}}$	54.1	61.9	55.3	48.4	54.9
8	SFT + $PPO_{SNLI_{3K}}$ with Coarse-Grained Reward	53.7	65.2	55.3	47.8	55.5
9	$DPO_{SNLI_{50k}}$ with Fine-Grained Reward	56.3	61.5	55.8	48.5	55.5

Contributions

- Systematically evaluate various question decomposition strategies.
- Introduce fine-grained reward modeling to enhance multi-agent, multi-modal collaboration without additional annotations.
- Experimental results show significant improvements in decomposition adaptability and efficiency with fine-grained reward modeling.