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® Kronecker product and @ Kathri-Rao product

3-Way Outer Product
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MxN PxQ

Rank-1 Tensor
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Review: Matrix Kronecker Product

a11B a12B
a1 B

axr1B azoB ---

= [31 ®b1 a1 @by

Matrix Khatri-Rao Product
AoB= [a1 b1 a> @by -

An I x J x K tensor
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3" order tensor
mode 1 has dimension [
mode 2 has dimension .J

mode 3 has dimension K
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Motivation

Softmax
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Tensor Attention, defined as Softmax(Q(K; © KQ)T)(VI @ V5) , is a higher-order generalization of matrix
attention that can capture high-order/multi-view information intrinsically. Meanwhile, it faces a cubic computational
complexity bottleneck. Therefore, in this work, we pose the following question:

Can we achieve almost linear time for gradient computation in Tensor Attention Training?

Problem Setup

/Definition 1 (Tensor attention optimization) \
Suppose Ay, Ay, A, Ay, A5, E € R"™%and Y;,Ys € R¥*9 are
given. Let D(X) = diag(exp(A1 X (42 ® A3) ' /d)1,,2) € R™*™

and Y =Y10Y; € R®*¢ e formulate the attention optimization

problem as:
min Loss(X) := 0.5|D(X)~

k X cRdxd?

eXp(AlX(A2 X A3)T/d)(A4 X A5)Y — E”%

~

/Definition 2 (Approximate Tensor Attention Loss Gradient Computation (ATAttLGC(n, d, B, €))
Suppose A1, Ag, Az, Ay, A5, E € R™? and X1, X, X3,Y1,Y2 € R¥™4  LetX = X; - (X5 0 X3)T € R¥*4* | et
€, B > 0.Assume that max{||A1X1|lc0, ||[A2X2||co, ||A3X3|lc0, ||[A4Y1||c0, ||A5Y2]lcc} < B . Letus

assume that any numbers in the previous matrices are in the log(n) bits model. Then, our target is to output a

matrix § € R™*? to approximate the gradient of the loss function in Definition 1, satisfying
~ dLoss(X)
g loo <€
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min 0.5 (n (X) x €Xp (ni{l Ay |xd X X 2 (A2 ® A3)T - n{NE

X c Rdxd
F
n d
. S ”
n (x) =diag | €XpP (n{ A; |xd X x d?

Main Results
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model. Then, there exist an algorithm that runs in almost linear time

Kl'heorem 1 (Fast gradient computation)

Assume that any numbers in the matrices are in the log(n) bits

n1t°() to solve

ATAttLGC(n,d = O(logn), B = o(+/logn),e = 1/ poly(n)).
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Kl'heorem 2 (Hardness) \

Assume Strong Exponential Time Hypothesis (SETH). Let v : N — Nbe any function with 7(n) = o(log n)
and y(n) =w(1).Foranyconstant § >0 ,when E =0, Y =

|z, X = Al for some scalar )\ ¢ 0, 1],

it is impossible in O (n3

ATAttLGC(n,d = ©(logn), B = ©({/v(n

—0 ) time to solve

) -logn),e = O(1/(logn)?)).
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