In-Context Learning behaves as a greedy layerwise gradient descent algorithm

Brian K Chen, Tianyang Hu, Hui Jin, Hwee Kuan Lee, Kenji Kawaguchi

Motivation

• ICL is an emergent property found in LLMs

• Appending prompts to existing ones "teaches" the LLM new information without training the model

Circulation revenue has increased by 5% in Finland. // Positive

Circulation revenue has increased by 5% in Finland. // Finance

Panostaja did not disclose the purchase price. // Neutral

Paying off the national debt will be extremely painful. // Negative

The company anticipated its operating profit to improve. // ____

They defeated ... in the NFC Championship Game. // Sports

Apple ... development of in-house chips. // Tech

The company anticipated its operating profit to improve. //

Preliminaries

Linearization of the attention mechanism:

 $LinAttn(V,\phi(K),\phi(Q)) = V\phi(K)^T\phi(Q)$

Where $\phi(x)^T \phi(y)$ is a kernel approximator and the scaling factor is omitted

- Linearized Attention greatly reduces computational cost
- There has been a lot of work in this field which has shown promise in recent years
- E.g. Retnet, Infini-Attention, Hedgehog etc.
- <u>Dual form of linear attention and gradient decent:</u>

- Theoretical understanding of ICL remains limited
- Existing work that considers ICL as a single step of gradient descent focuses on limited cases with specific weights
- Want to study the mechanics of ICL by looking at the linearized attention module with generic weights

Main Result

Theorem 1:

and

For an initial self-attention mechanism with query token q, matrices W_V, W_K , prompt $X = [p_N, ..., p_1]$ and operator $\mathcal{F}_0([X], q) =$ $LinAttn(W_VX, \phi(W_KX), q)$, the following systems are equivalent:

> $S_0 = \mathcal{F}_0([X';X],\boldsymbol{q})$ $S_1 = \mathcal{F}_1([X], \boldsymbol{q})$

Where $\mathcal{F}_1([X], .)$ is the linear function $\mathcal{F}_0([X], .)$ after one step of gradient descent with learning rate η and training set $\{x_i, y_i\}_{i=1}^M$. For overvi $\subset \{1, M\}$

Let $f_W(x) = Wx$ be a linear function. Given gradient descent with l_2 loss, T training samples $\{x_i, y_i\}_{i=1}^T$ and learning rate η

$$W_{1}x = \left(W_{0} - \eta \nabla \frac{1}{T} \sum_{i=1}^{T} l_{2}(f_{W}(x_{i}), y_{i}) \Big|_{W=W_{0}}\right) x$$
$$= W_{0}x + LinAttn(\frac{\eta}{T}E, X, x)$$
$$X = [x_{1}; ...; x_{T}] \text{ is the matrix of inputs}$$
$$E = Y - W_{0}X \text{ is the error matrix where } Y = [y_{1}, ..., y_{T}]$$

Observations:

- In-context learning forms a type of meta-optimizer on \bullet the query resembling gradient descent with specific training data for linearized transformers
- Statement isn't constrained to specific regression \bullet settings and values for W_O, W_K, W_V
- $W_V p'_i$ is intuitively the "value" which we place upon token $W_{Q}p'_{i}$. Here we place emphasis on $W_{K}p'_{i}$ rather

$$x_i = \phi(W_K p_i')$$

$$y_i = \frac{M}{\eta} W_V p_i' + \mathcal{F}_0([X], \phi(W_K p_i'))$$

than the query token itself.

Extension to Multiple Layers:

- Consider a more realistic model architecture with L layers stacked upon each other
- $f(x) = (T_L + I) \circ \cdots \circ (T_1 + I)(x)$
- For all *i* Layer T_i is either a FFN layer or a linear self-attention layer $T_i = LSA_i$
- Corresponding weight matrices $W_{Q_i}, W_{K_i}, W_{V_i}$
- *I* is the identity function

Algorithm 1: ICL imitation algorithm

: input:
$$f_1$$
 and $[p'_m, ..., p'_1, p_n, ..., p_1]$
2: for $i \in \{1, ..., L\}$
IF T_i is a FFN with residual connection, return
 $[p'_m, ..., p'_1, p_n, ..., p_1] = (T_i + I)([p'_m, ..., p'_1, p_n, ..., p_1]$

ELSE $T_i = LSA_i$

(a) construct matrix $W_0 = W_{base,i}([p_n, ..., p_1])$

(b) Update the linear functional $f(x) = W_0 x$ with a single step of gradient descent with learning rate m and training set $\{\phi(), W_{V_i}p'_i + W_0\phi(W_{K_i}p'_i))\}_{i=1}^m$ such that the updated weights are W_1

 $(\mathbf{c}) [p'_{m}, ..., p'_{1}, p_{n}, ..., p_{1}] = W_{1}\phi(W_{Q_{i}}[p'_{m}, ..., p'_{1}, p_{n}, ..., p_{1}]) + [p'_{m}, ..., p'_{1}, p_{n}, ..., p_{1}]$

Theorem 2:

For a model f_1 described above and a prompt $[p'_m, ..., p'_1, p_n, ..., p_1]$, Algorithm 1 produces the same output as $f_1(p'_m, ..., p'_1, p_n, ..., p_1)$

Connection to greedy layer-wise algorithms

- Algorithm 1 is a recursive algorithm The labels are generated from the inputs themselves
- Algorithm 1 takes the form of a greedy unsupervised layer-wise pretraining algorithm (GLT)
- Real life phenomena shows degree of similarity:
 - GLT are observed to achieve quick convergence, ICL \bullet only applies a single step of gradient descent
 - GLT shown to help learn internal representations that represent higher level abstractions, ICL has similar properties
- This may motivate future steps forward with ICL:
 - This suggests that ICL may be a form of initialization \bullet which projects the model into a specific space
 - May want to have fixed ICL terms to guide fine-tuning steps, serving as the initialization. This actually begins to resemble instruction tuning
 - Motivates the construction of a unified theoretical lacksquareframework combining fine-tuning methods with ICL and instruction tuning

Katharopoulos, A., et al. Transformers are rnns: Fast autoregressive transformers with linar eattention. In International conference on machine learning, pp. 5156–5165. PMLR, 2020.

Sam L., Kexin J. 2022. Lecture 07: [Towards Understanding In-context Learning]. Accessed July 11, 2024.

Kazuki Irie, Róbert Csordás, & Jürgen Schmidhuber. (2022). The Dual Form of Neural Networks Revisited: Connecting Test Time Predictions to Training Patterns via Spotlights of Attention.