

Ensemble-based Offline Reinforcement Learning with Adaptive Behavior Cloning

Danyang Wang¹; Lingsong Zhang¹

¹Department of Statistics, Purdue University

Algorithm 1 Ensemble-based Actor Critic with Adaptive Behavior Cloning (EABC)

Input: offline dataset \mathcal{D} , number of Q-ensembles K, confidence level $p \in [0, 1]$. Initialize critic network ensemble Q_{θ_i} for i = 1, ..., K, and actor network π_{ϕ} , with random parameters θ_i 's, ϕ . Initialize target networks $\tilde{\theta}_i \leftarrow \theta_i$; $\tilde{\phi} \leftarrow \phi$. **for** i = 1 **to** T **do** Sample batch of N transitions $\{(s, a, r, s', d)\}$ from \mathcal{D} . $\tilde{a}' \leftarrow \pi_{\tilde{\phi}}(s') + \epsilon$, $\epsilon \sim clip(\mathcal{N}(0, \tilde{\sigma}), -c, c)$. Compute pess $(Q_{\tilde{\theta}}(s', \tilde{a}'))$. $y = r + \gamma(1 - d) \text{pess}(Q_{\tilde{\theta}}(s', \tilde{a}'))$. Update critics: $\theta_i \leftarrow \underset{\theta_i}{\operatorname{argmin}} N^{-1} \sum (Q_{\theta_i}(s, a) - y)^2$. **if** t % *policy update frequency* == 0 **then** $\tilde{a} \leftarrow \pi_{\phi}(s)$. Compute pess $(Q_{\theta}(s, \tilde{a}))$. $\lambda = \frac{\alpha}{N^{-1} \sum |\operatorname{pess}(Q_{\theta}(s, \tilde{a}))|}$.

Introduction

- Offline reinforcement learning (RL) algorithm TD3+BC [1] achieved state-of-the-art performance when it was proposed.
 However, it performs poorly on offline datasets with inferior behavior policy.
- We propose an offline RL algorithm, *Ensemble-based actorcritic with Adaptive Behavior Cloning* (EABC), built on TD3+BC, aiming to improve performance on datasets collected with inferior behavior policy.
- We use a *pessimistic ensemble of Q-value estimates* to reduce variance, and leverage a *weight function* with user-

Sample $w(s, a) \sim Bernoulli(p)$. Update actor: $\phi \leftarrow \underset{\phi}{\operatorname{argmin}} N^{-1} \sum_{\phi} \left[-\lambda \operatorname{pess}(Q_{\theta}(s, \tilde{a})) + w(s, a)(\pi_{\phi}(s) - a)^2 \right]$. Update target networks: $\tilde{\theta}_i \leftarrow \tau \theta_i + (1 - \tau) \tilde{\theta}_i$; $\tilde{\phi} \leftarrow \tau \phi + (1 - \tau) \tilde{\phi}$. end if end for

Adjust the extent of behavior cloning

based on the quality of behavior policy Given a user specified confidence level $p \in [0, 1]$, we adjust the extent of BC through a Bernoulli random variable. $w(s, a) = \begin{cases} 1 & \text{with probability } p \\ 0 & \text{with probability } 1 - p. \end{cases}$

- Essentially a hyperparameter fine-tuning issue, a common challenge in almost all algorithms.
- A set of five numbers {0.0, 0.25, 0.5, 0.75, 1.0}, covering representative scenarios of p.

Boosting the performance with a pessimistic halfe hopp Q value ensemble walk

specified confidence level *p* to adjust the extent of behavior cloning, accounting for the quality of the underlying offline dataset.

• See Algorithm 1 to the left. The code is at the website: https://github.com/Penguin0007/EABC.

D4RL Benchmark Experiments

-	Task Name	BC	TD3	TD3+BC	CQL	IQL	wPC	EABC (ours)
t 	halfcheetah-r hopper-r walker2d-r	2.2 ± 0.0 3.7 ± 0.6 1.3 ± 0.1	32.0±2.2 26.8±5.1 -0.1±0.2	$11.0{\pm}1.1$ $8.5{\pm}0.6$ $1.6{\pm}1.7$	17.5 ± 1.5 7.9 ± 0.4 5.1 ± 1.3	13.1 ± 1.3 7.9 ± 0.2 5.4 ± 1.2	$19.7{\pm}0.8$ $20.9{\pm}9.4$ $1.3{\pm}2.3$	32.4 ±0.7 31.5 ±0.4 1.7±1.7
	halfcheetah-m hopper-m walker2d-m	$43.2{\pm}0.6$ $54.1{\pm}3.8$ $70.9{\pm}11.0$	$33.8 \pm 11.8 \\ 0.7 \pm 0.0 \\ 0.6 \pm 1.0$	48.3 ± 0.3 59.3 ± 4.2 83.7 ± 2.1	$47.0{\pm}0.5$ $53.0{\pm}28.5$ $73.3{\pm}17.7$	$47.4{\pm}0.2$ $66.2{\pm}5.7$ $78.3{\pm}8.7$	53.2±0.3 79.4±2.0 71.0±31.6	67.3±0.9 92.4±3.9 89.0±0.6
	halfcheetah-m-r hopper-m-r walker2d-m-r	37.6 ± 2.1 16.6 ± 4.8 20.3 ± 9.8	42.3 ± 7.8 44.4 ± 23.8 31.0 ± 14.2	$44.6{\pm}0.5$ $60.9{\pm}18.8$ $81.8{\pm}5.5$	45.5±0.7 88.7±12.9 81.8±2.7	44.2 ± 1.2 94.7 ± 8.6 73.8 ± 7.1	$48.1{\pm}0.4$ $94.5{\pm}3.8$ $84.0{\pm}11.0$	61.4±1.6 102.6±1.4 93.2±2.9
	halfcheetah-m-e hopper-m-e walker2d-m-e	44.0 ± 1.6 53.9 ± 4.7 90.1 ± 13.2	$6.2{\pm}7.1$ $0.7{\pm}0.1$ $0.7{\pm}1.1$	90.7±4.3 98.0±9.4 110.1±0.5	75.6±25.7 105.6 ±12.9 107.9±1.6	86.7±5.3 91.5±14.3 109.6±1.0	63.7±10.8 64.7±29.1 91.4±39.1	92.9±1.9 104.0±3.6 112.0±0.3
	halfcheetah-e hopper-e walker2d-e	91.8±1.5 107.7±0.7 106.7±0.2	-2.7±0.3 1.3±0.5 1.8±0.3	96.7 ± 1.1 107.8 ± 7 110.2 ± 0.3	96.3±1.3 96.5±28.0 108.5±0.5	95.0 ± 0.5 109.4 ± 0.5 109.9 ± 1.2	64.9±13.0 44.4±49.2 68.1±53.9	97.6 ±0.2 111.2 ±0.3 110.8 ±0.1

Simple implementation of ensemble: $\{Q_{\theta_i}\}_{i=1}^K$, with default number of ensembles K constrained to 10. $\bar{Q}_{\theta} := \frac{1}{K} \left(\sum_{i=1}^K Q_{\theta_i} \right)$ $\widehat{\sigma} := \sqrt{\frac{1}{K-1} \sum_{i=1}^K (Q_{\theta_i} - \bar{Q}_{\theta})^2}$ $pess(Q_{\theta}(s, a)) = \bar{Q}_{\theta}(s, a) - \widehat{\sigma}$

Learning curves of EABC

Average

Conclusions

- With adjustable behavior cloning, we effectively improved algorithm performance on inferior data.
- Benefiting from the ensemble approach, the performance is stable with low variance.
- EABC has a simple, intuitive structure, and a short runtime, while achieving state-of-the-art performance.
- One potential future extension could involve automating the determination of *p*.
- Utilization of pre-known expert information can be immensely valuable. By leveraging such supervised information (confidence level *p* regarding the offline dataset), we can potentially avoid extensive parameter tuning and complex training strategies.

References

[1] Scott Fujimoto and Shixiang Shane Gu. A

