
Narrow Transformer: Mono-lingual Code SLM for Desktop

Motivation

Generic multi-lingual code models boost productivity but the one-size-fits-all approach of these generic multi-lingual code models often falls short in meeting the
nuanced requirements of project-level coding tasks in an enterprise. This led to the development of Narrow Transformers (NTs), specialized models optimized for specific
programming languages. These NTs are designed to optimize performance for a specific programming language, balancing the trade-offs between model size, inferencing
cost, and operational throughput. As demand for tailored solutions grows, we can expect a surge in NT development, providing the precision and efficiency required by
enterprise projects.

Experiment 1: Next token prediction objective: Trained for
100,000 steps (5 epochs) with a batch size of 1 million tokens.
Learning rate started at 4×10−4, decayed to 4×10−6 with 1,000
iterations of linear warmup. Training spanned 12 days with a global
batch size of 180. Checkpoints saved every 1,000 steps.
Experiment 2: Fill-in-the-Middle (FIM): Repeated Experiment 1
with a 50% FIM rate. The FIM dataset was split into SPM (Suffix-
Prefix-Middle) and PSM (Prefix-Suffix-Middle).
Observations: Without FIM, the model's infilling capability dropped
significantly (FIM scores near zero). With FIM, there was a minor
decrease in MultiPL-E metrics (about 0.7%), but the model
maintained its infilling proficiency. Performance comparisons are
shown in chart.

Ablation on In-filling

Computation Capabilities

Our analysis indicates that our NT-Java quantized models achieve an optimal balance between accuracy and resource utilization, making them a suitable candidate for
deployment in resource-constrained environments. For the computation of the MultiPL-E scores of the quantized variants, we employed the ‘load in 4-bit’ and ‘load in 8-
bit’ parameters within the BigCode Eval Harness.

References

• Raymond Li et al. “StarCoder: may the source be with you!” In: CoRR abs/2305.06161 (2023).

• Loubna Ben Allal et al. “SantaCoder: don’t reach for the stars!” In: CoRR abs/2301.03988 (2023).

• Baptiste Rozi`ere et al. “Code Llama: Open Foundation Models for Code”. In: CoRR abs/2308.12950 (2023).

• https://github.com/Infosys/Megatron-LM#nt-java-11b-extending-pretraining

Kamalkumar Rathinasamy, Balaji A J, Ankush Kumar, Gagan Gayari, Harshini K, Rajab Ali Mondal,

Sreenivasa Raghavan K S, Swayam Singh, Mohammed Rafee Tarafdar

Hugging Face Paper


	Slide 1

