INfoSys

Narrow Transformer: Mono-lingual Code SLM for Desktop

Kamalkumar Rathinasamy, Balaji A J, Ankush Kumar, Gagan Gayari, Harshini K, Rajab Ali Mondal,

Sreenivasa Raghavan K S, Swayam Singh, Mohammed Rafee Tarafdar

The Stack

StableCoder «—— \

StarChat a +—— StarCoderBase

R
CodeGen 2.5 «—— § StarCoderBase-7B
3 StarCoderBase-3B
2. StarCoderBase-1B
Replit-Code-3B «— ™
: Q)
DeciCoder-1B «—— 9
StarChat p «—— StarCoder+ g StarCoder
3
NT Java 1.1B OctoCoder

Pretraining Continual Pretraining

> WizardCoder

— PanGu-Coder?

Alunwwon)

— Defog-SQLCoder

Fine-tuning

Motivation

Training lterations

CodelLlama-Python-7B

0.1T training tokens (Python)
Lesser GPU hours
1e-4 learning rate
4096 context length

CodelLlama-/B

0.5T training tokens (Code)
Less GPU hours
3e-4 learning rate
4096 context length

Meta

SNGEY,

.'. ° g

}.’ NEURAL INFORMATION
;‘.i. , PROCESSING SYSTEMS
o

NT-Java-1.1B

0.02T training tokens (Java)
1,440 GPU hours
4e-4 learning rate
8192 context length

StarCoderBase-1.1B

1T training tokens (Code)

33,792 GPU hours
4e-4 learning rate
8192 context length

Hugging Face + Infosys

Generic multi-lingual code models boost productivity but the one-size-fits-all approach of these generic multi-lingual code models often falls short in meeting the
nuanced requirements of project-level coding tasks in an enterprise. This led to the development of Narrow Transformers (NTs), specialized models optimized for specific
programming languages. These NTs are designed to optimize performance for a specific programming language, balancing the trade-offs between model size, inferencing
cost, and operational throughput. As demand for tailored solutions grows, we can expect a surge in NT development, providing the precision and efficiency required by

enterprise projects.

Ablation on In-filling

Experiment 1: Next token prediction objective: Trained for 20 -
—e— NT-Java-1.1B without FIM

100,000 steps (5 epochs) with a batch size of 1 million tokens. —s— NT-Java-1.1B with FIM
Learning rate started at 4x10-4, decayed to 4x10-6 with 1,000

iterations of linear warmup. Training spanned 12 days with a global o | 'A'
batch size of 180. Checkpoints saved every 1,000 steps. m
Experiment 2: Fill-in-the-Middle (FIM): Repeated Experiment 1 167
with a 50% FIM rate. The FIM dataset was split into SPM (Suffix-
Prefix-Middle) and PSM (Prefix-Suffix-Middle).

Observations: Without FIM, the model's infilling capability dropped
significantly (FIM scores near zero). With FIM, there was a minor
decrease in MultiPL-E metrics (about 0.7%), but the model

maintained its infilling proficiency. Performance comparisons are

Max Score: 18.90

s
—_— |
—

MultiPL-E (Java)

shown in chart. 10 1

Min Score: 7.50 &1

Max Score: 19.60

'1 ‘?

[|

Model FIM HumanEval-FIM (Java) MultiPL-E (Java) _ —®

Min $core: 7.50
NT-Java-1.1B (Experiment 1) No 0.01 19.6 0 50000 40000 60000
NT-Java-1.1B (Experiment 2) Yes 0.67 18.9 Training Steps

! !
80000 100000

Computation Capabilities

Our analysis indicates that our NT-Java quantized models achieve an optimal balance between accuracy and resource utilization, making them a suitable candidate for
deployment in resource-constrained environments. For the computation of the MultiPL-E scores of the quantized variants, we employed the ‘load in 4-bit’ and ‘load in 8-

bit’ parameters within the BigCode Eval Harness.

Model Pass@1 (Java) Size (GB)
StarCoderBase-1.1B 14.2 ~ 2.27
NT-Java-1.1B_Q4 15.1 0.76
NT-Java-1.1B_Q8 17.7 1.23
StarCoderBase-3B 19.25 ~ 6.1
NT-Java-1.1B 20.2 2.27
References

 Raymond Li et al. “StarCoder: may the source be with you!” In: CoRR abs/2305.06161 (2023).

Loubna Ben Allal et al. “SantaCoder: don’t reach for the stars!” In: CoRR abs/2301.03988 (2023).

Baptiste Rozi ere et al. “Code Llama: Open Foundation Models for Code”. In: CoRR abs/2308.12950 (2023).
https://github.com/Infosys/Megatron-LM#nt-java-11b-extending-pretraining

Hugging Face

	Slide 1

