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CodelLlama-Python-7B

0.1T training tokens (Python)
Lesser GPU hours
1e-4 learning rate
4096 context length

CodelLlama-/B

0.5T training tokens (Code)
Less GPU hours
3e-4 learning rate
4096 context length
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NT-Java-1.1B

0.02T training tokens (Java)
1,440 GPU hours
4e-4 learning rate
8192 context length

StarCoderBase-1.1B

1T training tokens (Code)

33,792 GPU hours
4e-4 learning rate
8192 context length

Hugging Face + Infosys

Generic multi-lingual code models boost productivity but the one-size-fits-all approach of these generic multi-lingual code models often falls short in meeting the
nuanced requirements of project-level coding tasks in an enterprise. This led to the development of Narrow Transformers (NTs), specialized models optimized for specific
programming languages. These NTs are designed to optimize performance for a specific programming language, balancing the trade-offs between model size, inferencing
cost, and operational throughput. As demand for tailored solutions grows, we can expect a surge in NT development, providing the precision and efficiency required by

enterprise projects.

Ablation on In-filling

Experiment 1: Next token prediction objective: Trained for 20 -
—e— NT-Java-1.1B without FIM

100,000 steps (5 epochs) with a batch size of 1 million tokens. —s— NT-Java-1.1B with FIM
Learning rate started at 4x10-4, decayed to 4x10-6 with 1,000

iterations of linear warmup. Training spanned 12 days with a global o | 'A'
batch size of 180. Checkpoints saved every 1,000 steps. m
Experiment 2: Fill-in-the-Middle (FIM): Repeated Experiment 1 167
with a 50% FIM rate. The FIM dataset was split into SPM (Suffix-
Prefix-Middle) and PSM (Prefix-Suffix-Middle).

Observations: Without FIM, the model's infilling capability dropped
significantly (FIM scores near zero). With FIM, there was a minor
decrease in MultiPL-E metrics (about 0.7%), but the model

maintained its infilling proficiency. Performance comparisons are
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Min $core: 7.50
NT-Java-1.1B (Experiment 1) No 0.01 19.6 0 50000 40000 60000
NT-Java-1.1B (Experiment 2) Yes 0.67 18.9 Training Steps
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Computation Capabilities

Our analysis indicates that our NT-Java quantized models achieve an optimal balance between accuracy and resource utilization, making them a suitable candidate for
deployment in resource-constrained environments. For the computation of the MultiPL-E scores of the quantized variants, we employed the ‘load in 4-bit’ and ‘load in 8-

bit’ parameters within the BigCode Eval Harness.

Model Pass@1 (Java) Size (GB)
StarCoderBase-1.1B 14.2 ~ 2.27
NT-Java-1.1B_Q4 15.1 0.76
NT-Java-1.1B_Q8 17.7 1.23
StarCoderBase-3B 19.25 ~ 6.1
NT-Java-1.1B 20.2 2.27
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