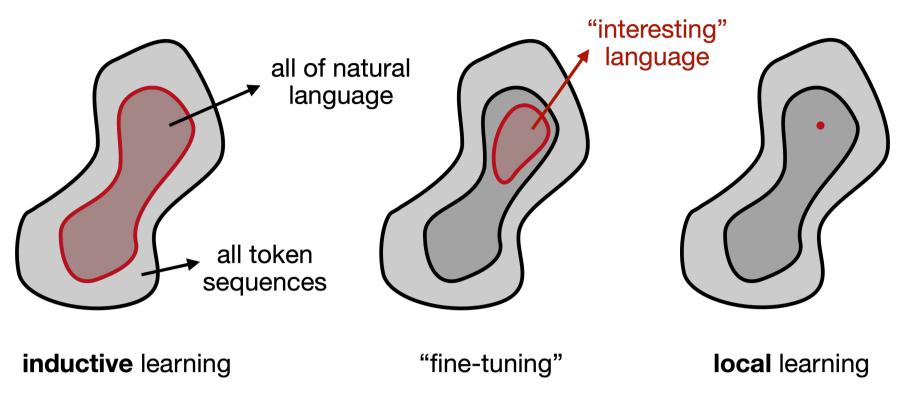


Efficiently Learning at Test-Time: Active Fine-Tuning of LLMs

Jonas Hübotter, Sascha Bongni, Ido Hakimi, Andreas Krause

Motivation

- Goal: Learn a specific model, tailored to each prompt
- Requires automatic data selection (like with RAG)

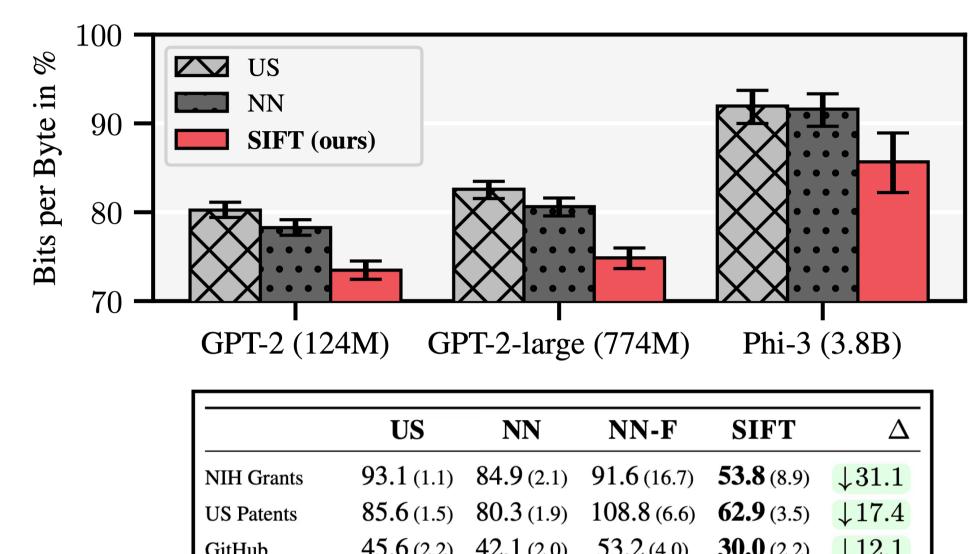


How can we select data that effectively reduces uncertainty about the response to the prompt?

Test-Time Fine-Tuning with SIFT

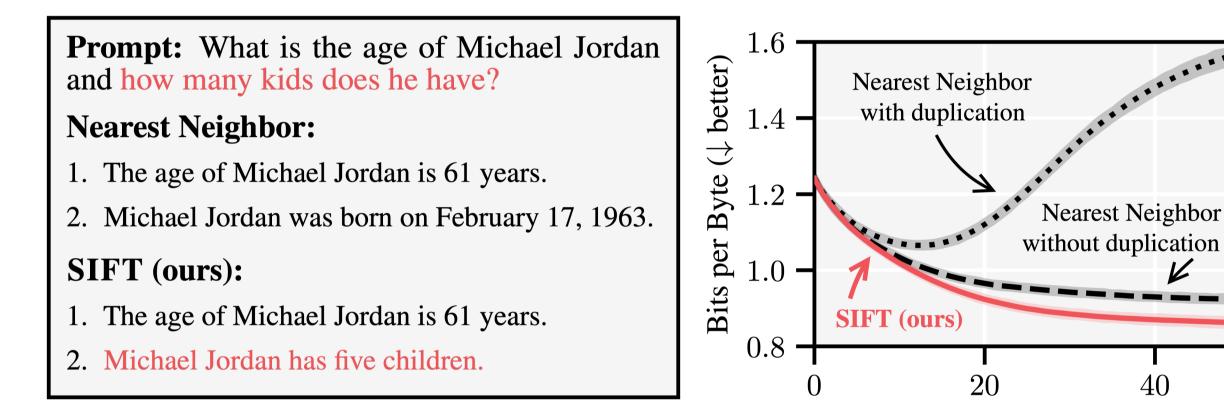
Taking a single gradient step on each selected data point

1. SIFT selects informative data!



Insufficiency of Nearest Neighbor Retrieval

Nearest Neighbor selects redundant data!



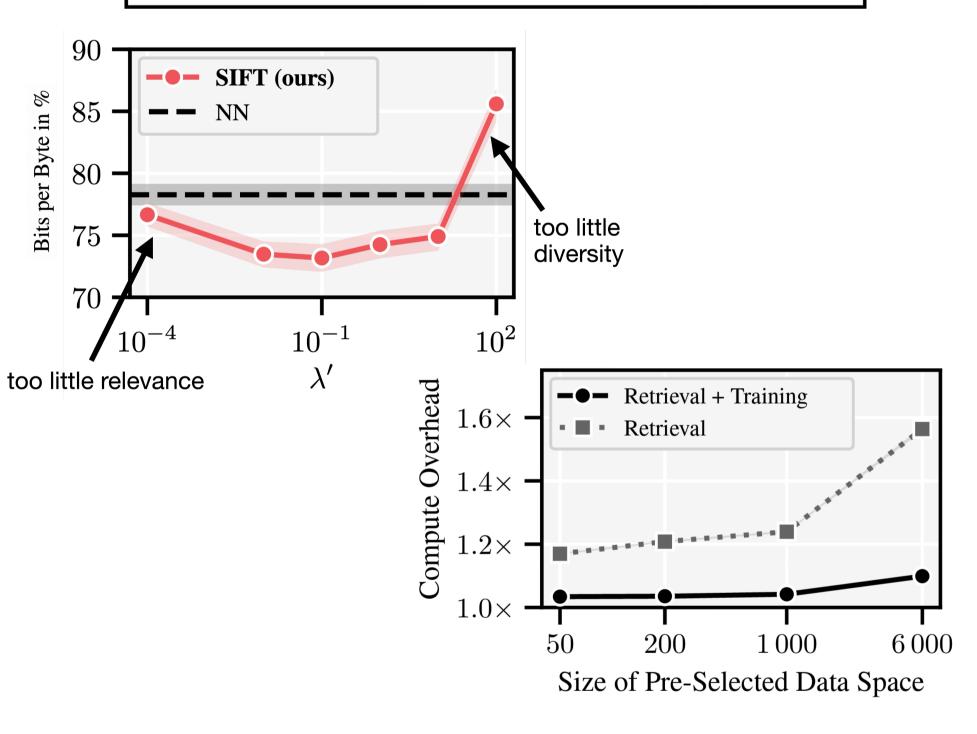
SIFT: Selecting Informative Data for Fine-Tuning

Idea: Select data that *maximally* reduces "uncertainty" about how to respond to the prompt

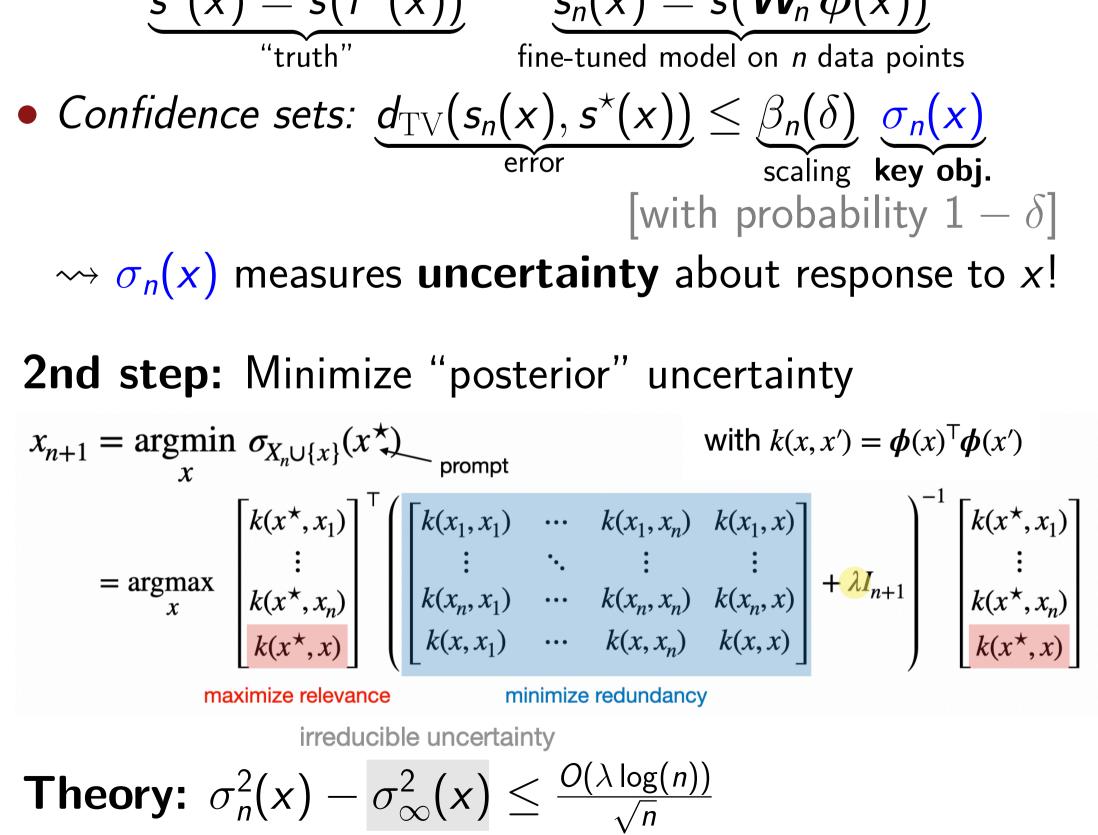
1st step: Estimate uncertainty

• Surrogate model: logit-linear model $s(f^*(x))$ with $f^*(x) = \mathbf{W}^*\phi(x) [\mathbf{W}^* \text{ unknown}, \phi(\cdot) \text{ known}]:$ $\underline{s^*(x) = s(f^*(x))} \qquad \underline{s_n(x) = s(\mathbf{W}_n \phi(x))}$

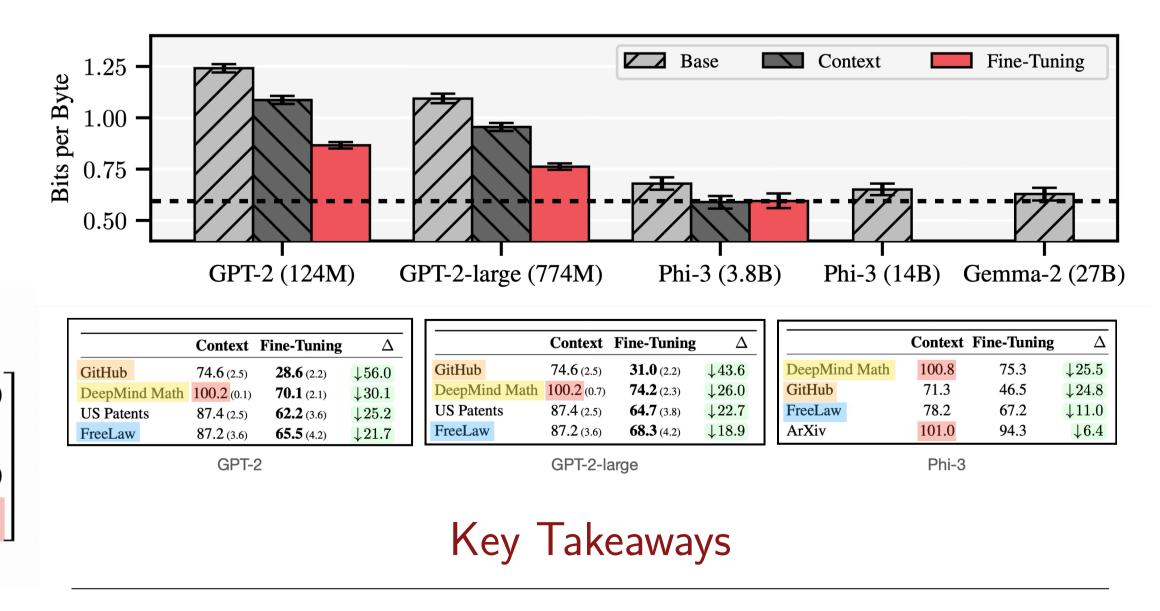
GitHub	+J.0(2.2)	42.1 (2.0)	JJ.2 (4.0)	30.0 (2.2)	+14.1
Enron Emails	68.6 (9.8)	64.4 (10.1)	91.6 (20.6)	53.1 (11.4)	$\downarrow 11.3$
Wikipedia	67.5 (1.9)	66.3 (2.0)	121.2 (3.5)	62.7 (2.1)	↓3.6
Common Crawl	92.6 (0.4)	90.4 (0.5)	148.8 (1.5)	87.5 (0.7)	$\downarrow 2.9$
PubMed Abstr.	88.9 (0.3)	87.2 (0.4)	162.6 (1.3)	84.4 (0.6)	$\downarrow 2.8$
ArXiv	85.4 (1.2)	85.0 (1.6)	166.8 (6.4)	82.5 (1.4)	$\downarrow 2.5$
PubMed Central	81.7 (2.6)	81.7 (2.6)	155.6 (5.1)	79.5 (2.6)	$\downarrow 2.2$
Stack Exchange	78.6 (0.7)	78.2 (0.7)	141.9 (1.5)	76.7 (0.7)	$\downarrow 1.5$
Hacker News	80.4 (2.5)	79.2 (2.8)	133.1 (6.3)	78.4 (2.8)	↓0.8
FreeLaw	63.9 (4.1)	64.1 (4.0)	122.4 (7.1)	64.0 (4.1)	$\uparrow 0.1$
DeepMind Math	69.4 (2.1)	69.6 (2.1)	121.8 (3.1)	69.7 (2.1)	$\uparrow 0.3$
All	80.2 (0.5)	78.3 (0.5)	133.3 (1.2)	73.5 (0.6)	↓4.8
				_	



2. Test-time fine-tuning reduces next-token prediction error of SOTA models!



→ predictions can be only as good as the data and the learned abstractions!



- Test-Time Fine-Tuning is a promising approach to improve LLM performance at test-time
- SIFT selects better data for fine-tuning than Nearest Neighbor retrieval