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Research Question: Can we select appropriate models from the model zoo to ensure energy efficiency while
satisfying service level agreements (SLAS)?

a )

We are solving a Tri-fold Problem

© Introduction

» Deep learning infrastructure providers and end users are confronted with an
abundance of models (model zoo) for language modeling tasks.

= Related to two major research directions: Dynamic Inference and Inference
Request Scheduling.

= Our work, MESS+, automatically selects a readily pre-trained model.

= Since MESS+ routes inference requests to different models, it can build on top
of existing scheduling techniques.

1. End-users primarily care about correct model output
2. Inference endpoint providers prioritize low operating costs

3. Enterprise use-cases require consistent high quality model
output while keeping costs in check through Service Level
Agreements (SLASs)

© Methodology

Overall Control Problem:
E

:a) Request Algorithm 1: Selecting the Model with

Energy-optimal Service level GuaranteeS Energy consumption (joules) for a model.

(MESS+) A Accuracy of a model's response (requires
Input: T; V; a; ¢c; {Em(t) : Vm, t}; learning rate n > 0 feedback signal).
Output: Outputs of models chosen for all ¢ y Binary variable; 1 if a model is chosen.

1 Initialize Q(1) «— O; predictor parameters X,, to a common
random vector forall m; k <+ 1;
2 fort < 1toT'do

a SLA minimum accuracy requirement.

. c Exploration probability
3 Compute p; <— min (1’ %) over time with cube root
4 Sample X; ~ Bernoulli(py); decay
5 if Xy = 1 then . 1 T M
t// Exploration MYy (8):vem) T 23}21 Zg’fl Ym (8) Em (1),
6 foreach m € {1,2, ..., M} do st AT SM ()AL > a,
7 Obtain true accuracy A, (t); A
8 Xm,t+1 — Zmzl ym(t> — 1,\V/t E {1,...,T}7
. 2
Xm,t — nvx (A(xm,t,at) — Am(t)) : ym(t) < {07 1}7\V/t7 m,
9 m™ < arg max,, Am(t);
10 else Decision problem for each request
éq%; INFERENCE 11 m* « argming, V-Em (t)+Q(t) - (a— A (t)); |‘—
<Y ENDPOINTS Challenges:
12 | Xm,t41 & Xm,t3 - Obijective and constraints are
13 Get output from model m™ and its accuracy A, » (t); correlated over time
// Virtual queue update - - « Characteristics of future requests
14 —| Q(t + 1) « max{0,Q(t) + o — A, (t)};lA virtual queue is used g

to capture SLA violations cannot be predicted

© Accuracy Predictor

MSE Objective for accuracy predictor: 5 " MESS+ satisfies the SLA with requirement a while consuming the least energy among all
5 1 compliant strategies
— |H, — . : : . . :
L(X’m) &y (A(Xm’ at) Am (t)) " Analyzing V reveals that its optimal value is inversely related to the minimum service

requirement a

®  Balancing level of exploration is important as large ¢ implies more training of x,,, but can
also lead to overfitting on incoming requests

To predict the accuracy, we train a predictor for K
steps. The convergence upper bound is:

1 ZK " VL(X )H 2 < O( 1 ) MESS+ reduces the energy consumption of an inference service by up to 2.5x
K -1 - m,t =~
K k=1 ok VK Model WMT14 (o = 0.52) CNNDailyMail (o = 0.315)
: _ Accuracy Energy Accuracy Energy
SGD convergence bound for our choice of p;: (BLEU) (Joules) Meets « (ROUGE]) (Joules) Meets o
2
i[K] =6 (T 3 ) O (1 / «3/T) TinyLlama 491406 44639+£06 No 309403 142080+14  No
Llama-2 13B 551404 527.870 £ 5.1 Yes 322403 750.285 £+ 7.5 Yes
Random with constraint 52.0£0.0 280.426 +3.0 Yes 31.5+£00 416466 +4.3 Yes
1 K KE MESS+ (V =0.1,¢c=3) 522402 149.399 +1.3 Yes 31.54+0.1 163.836 1.5 Yes
Upper bound of a.vg..addl T Zk:l E = ==
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