MESS+: Energy-Optimal Inferencing in Language Model Zoos with Service Level Guarantees

Ryan Zhang¹, Herbert Woisetschläger², Shiqiang Wang³, Hans-Arno Jacobsen⁴ 1 - Horace Greeley High School, 2 - Technical University of Munich, 3 - IBM Research, 4 - University of Toronto

Research Question: Can we select appropriate models from the model zoo to ensure energy efficiency while satisfying service level agreements (SLAs)?

Introduction

- Deep learning infrastructure providers and end users are confronted with an abundance of models (model zoo) for language modeling tasks.
- Related to two major research directions: Dynamic Inference and Inference **Request Scheduling.**
- Our work, MESS+, automatically selects a readily pre-trained model.
- Since MESS+ routes inference requests to different models, it can build on top of existing scheduling techniques.

3

4

5

6

7

8

9

10

11

12

13

14

We are solving a Tri-fold Problem

- End-users primarily care about *correct model output*
- 2. Inference endpoint providers prioritize *low operating costs*
- 3. Enterprise use-cases require consistent high quality model output while keeping costs in check through **Service Level** Agreements (SLAs)

Methodology

Algorithm 1: Selecting the Model with

Overall Control Problem:

E Energy consumption (joules) for a model.

Energy-optimal Service level GuaranteeS (MESS+)

Input: T; V; α ; c; { $E_m(t) : \forall m, t$ }; learning rate $\eta > 0$ **Output:** Outputs of models chosen for all t

1 Initialize $Q(1) \leftarrow 0$; predictor parameters \mathbf{x}_m to a common random vector for all $m; k \leftarrow 1$;

2 for $t \leftarrow 1$ to T do **Exploration probability** Compute $p_t \leftarrow \min\left(1, \frac{1}{\sqrt[3]{t}}\right)$ over time with cube root decay Sample $\mathcal{X}_t \sim \text{Bernoulli}(p_t)$; if $\mathcal{X}_t = 1$ then $\min_{\{y_m(t)\}}$ // Exploration for each $m \in \{1,2,...,M\}$ do

Obtain true accuracy
$$A_m(t)$$
;
 $\mathbf{x}_{m,t+1} \leftarrow$
 $\mathbf{x}_{m,t} - \eta \nabla_{\mathbf{x}} \left(\hat{A}(\mathbf{x}_{m,t}, \mathbf{a}_t) - A_m(t) \right)^2$;

$$\begin{array}{c} & \stackrel{\smile}{m^{*}} \leftarrow \arg\max_{m} A_{m}(t); \\ \text{else} & \underbrace{\text{Decision problem for each request}}_{m^{*} \leftarrow \arg\min_{m} V \cdot E_{m}(t) + Q(t) \cdot (\alpha - \hat{A}_{m}(t));} \end{array}$$

$$\begin{bmatrix} \mathbf{x}_{m,t+1} \leftarrow \mathbf{x}_{m,t}; \\ \text{Get output from model } m^* \text{ and its accuracy } A_{m^*}(t); \\ // \text{ Virtual queue update} \\ Q(t+1) \leftarrow \max\{0, Q(t) + \alpha - A_{m^*}(t)\}; \\ A \text{ virtual queue is used} \\ \text{ to capture SLA violations} \\ \end{bmatrix}$$

- **A** Accuracy of a model's response (requires feedback signal).
- Binary variable; 1 if a model is chosen.
- SLA minimum accuracy requirement. α

$$\begin{array}{ll} \exists T \sum_{t=1}^{T} \sum_{m=1}^{M} y_m(t) E_m(t), \\ \text{s.t.} & \frac{1}{T} \sum_{t=1}^{T} \sum_{m=1}^{M} y_m(t) A_m(t) \ge \alpha, \\ & \sum_{m=1}^{M} y_m(t) = 1, \forall t \in \{1, \dots, T\} \\ & y_m(t) \in \{0, 1\}, \forall t, m, \end{array}$$

Challenges:

- Objective and constraints are correlated over time
- Characteristics of future requests cannot be predicted

Accuracy Predictor

MSE Objective for accuracy predictor:

$$L(\mathbf{x}_m) = \mathbb{E}_{\mathbf{a}_t} \left(\hat{A}(\mathbf{x}_m, \mathbf{a}_t) - A_m(t) \right)^2$$

4 MESS+ ensures energy minimal SLA compliance

- **MESS+** satisfies the SLA with requirement α while consuming the least energy among all compliant strategies
- Analyzing V reveals that its optimal value is inversely related to the minimum service requirement α

To predict the accuracy, we train a predictor for *K* steps. The convergence upper bound is:

$$\frac{1}{K} \sum_{k=1}^{K} \mathbb{E} \|\nabla L(\mathbf{x}_{m,t_k})\|^2 \le \mathcal{O}\left(\frac{1}{\sqrt{K}}\right)$$

SGD convergence bound for our choice of p_t :

$$\mathbb{E}[K] = \Theta\left(T^{\frac{2}{3}}\right) \qquad \mathcal{O}\left(\frac{1}{\sqrt[3]{T}}\right)$$

Upper bound of *avg. add'l*
$$\frac{1}{T} \sum_{k=1}^{K} E = \frac{KE}{T}$$

energy consumption:
For our choice of p_t : $\mathcal{O}\left(E/\sqrt[3]{T}\right)$

For our choice of p_t :

Our linear classifiers rapidly learn to predict their corresponding models' accuracy

Balancing level of exploration is important as large c implies more training of \mathbf{x}_m but can also lead to overfitting on incoming requests

MESS+ reduces the energy consumption of an inference service by up to 2.5x

Model	WMT14 ($\alpha = 0.52$)			CNNDailyMail ($\alpha = 0.315$)		
	Accuracy (BLEU)	Energy (Joules)	Meets α	Accuracy (ROUGE1)	Energy (Joules)	Meets α
TinyLlama	49.1 ± 0.6	44.639 ± 0.6	No	30.9 ± 0.3	142.080 ± 1.4	No
Llama-2 13B	55.1 ± 0.4	527.870 ± 5.1	Yes	32.2 ± 0.3	750.285 ± 7.5	Yes
Random with constraint	52.0 ± 0.0	280.426 ± 3.0	Yes	31.5 ± 0.0	416.466 ± 4.3	Yes
MESS+ ($V = 0.1, c = 3$)	52.2 ± 0.2	$\textbf{149.399} \pm 1.3$	Yes	31.5 ± 0.1	$\textbf{163.836} \pm 1.5$	Yes

