
Extracting Parallelism from Large Language
Model Queries

Steven Kolawole 1 Keshav Santhanam 2 Virginia Smith 1 Pratiksha Thaker 1

1Carnegie Mellon University 2Stanford University

LLM query 
parsing

Template
Context
Data
N

Parallel
LLM calls

Output 1

Output 2
…

Output n

Parallelizable 
Query

Generate 10 variations of 
detailed descriptions of a 
room, describing
the type of room, the 
style, and the included 
furniture. The description
is based on the following 
list: ["bed", "table", 
"nightstand", "lamp", 
"mirror"]

Motivation

LLM serving systems often treat queries as black boxes,
missing chances to optimize tasks embedded within
them.
Common decomposable subtasks (e.g., generating
multiple outputs or answering multiple questions) can
drastically reduce latency (and potentially improve
quality) if handled in parallel.

Challenges

Identifying parallelizable subtasks in raw natural
language queries.
Converting queries into structured formats without user
intervention.

FutureWork

Improve robust handling of queries requiring specific
output formats or expecting independent content
across parallel execution.
Explore post‐processing (i.e., an extra LLM step) for
complex queries in need of assembling parallel outputs
into required formats or filtering redundancies.

Method & Implementation

Approach: Identify queries with decomposable subtasks
(e.g., repeated generation, reading comprehension, keyword
extraction) from LMSYS‐chat‐1M‐dataset. Built a proto‐
type system with C++ that:

1. Uses LLMs to extract parallel structure from raw
queries.

2. Parses queries into structured schemas for parallel
execution (e.g., JSON).

3. Executes subtasks concurrently using data‐parallel LLM
calls.

Performance Gains

Up to 5.7× speedup for parallelized execution compared to
serial execution, with significant latency reductions.

0 10 20 30 40 50
N

50

100

150

200

D
ur

at
io

n 
(s

ec
on

ds
)

Serial vs Parallel Execution Duration
Serial Duration
Parallel Duration

0 10 20 30 40 50
N

0

5

10

15

20

Sp
ee

du
p 

Fa
ct

or

Speedup and Normalized Speedup
Speedup
Normalized Speedup

Figure 1. Scaling parallelization: varying n

Quality Comparison

An LLM judge (GPT‐4o) was used to judge the two versions of the generations according to their accuracy, grammar,
and specificity, as well as an overall preference.

Serial Parallel Tie

Accuracy Grammar Detail Overall
Evaluation Criteria

0

20

40

60

80

C
ou

nt
s

Reading comprehension

Accuracy Grammar Detail Overall
Evaluation Criteria

0

20

40

60

80

C
ou

nt
s

Keyword extraction

Accuracy Grammar Detail Overall
Evaluation Criteria

0

20

40

60

80

C
ou

nt
s

Repeated generation


