Efficient Transfer Learning driven by Layer-wise Features Aggregation

Chanwoo Kim¹ Jeyoon Yeom² Joowang Kim² Suho Kang² Kyungwoo Song²

¹University of Seoul

²Yonsei University

Code

Motivation: Are Lower-layers Useless?

Methodology: Layer-wise Feature Aggregation

• Lower layers may contain their unique information that is not preserved in the upper layers.

• By utilizing the lower layer features that have already been extracted, it is possible to enhance the model's generalization performance without incurring additional computational costs.

Overview

- We propose a method that utilizes an attention mechanism to integrate unique features from lower layers with abstracted features from upper layers.
- This simple approach enables the utilization of richer features at a low computational cost.

Theoretical Analysis

Theorem 1. Principle of Rank Diminishing

For a neural network with L layers, we define the function f_l at each layer l as a product of weight matrices: $f_1 = W_1$, $f_2 = W_2W_1$, and generally, $f_n = W_n \cdots W_1$ for $n = 1, \cdots, L$. Therefore, basic default model $\widetilde{W} = \prod_{l=1}^{n} W_l$. The rank of the intrinsic dimension monotonically decrease with depth: $rank(AB) \leq rank(A)$ and $rank(AB) \leq rank(B)$, $rank(\widetilde{W}) = min(rank(W_1), \cdots, rank(W_n))$

Theorem 2. Rank Preservation of LFA

- We introduce the Layer-wise Feature Aggregation (LFA) method, a novel approach that significantly mitigates the computational burdens commonly associated with the fine-tuning of pre-trained models.
- LFA optimizes at the output feature level, reducing computational load while enhancing performance with richer aggregated features.

Define the simple LFA as: LFA(W) = $C_1 W_1 + C_2 W_2 W_1 + \dots + C_n W_n \cdots W_1 = \sum_{l=1}^n C_l (\prod_{k=1}^l W_k)$ Then, the rank of the default model, denoted by \widetilde{W} , $rank(\widetilde{W}) = min(rank(W_1), \cdots, rank(W_n))$ is lower than the rank of LFA model, $rank(LFA(W)) \ge rank(\widetilde{W})$.

• Prevent overfitting caused by rank diminishing and enhance domain generalization performance

Result

Method Setting Caltech101 OxfordPets StanfordCars FGVCAircraft **SUN397** DTD EuroSAT UCF101 ImageNet Flowers102 Food101 Average 89.13 48.44 65.29 Zero-Shot CLIP Radford et al. [2021] 66.73 93.31 65.64 70.13 24.72 62.56 44.03 67.67 0-shot <u>85.86</u> 72.24 96.43 92.34 81.46 97.85 86.22 <u>41.19</u> 75.99 71.34 84.10 85.33 80.41 LinearProbing CLIP Radford et al. [2021] 16-shot 45.96 80.79 72.83 87.05 CLIP + LFA 95.74 83.55 97.93 84.84 74.66 70.63 84.22 16-shot <u>91.28</u> 91.70 CoOp Zhou et al. [2022c] 71.80 95.50 83.10 96.70 84.20 43.20 74.50 69.60 84.40 82.40 79.74 16-shot CoOp + LFA 72.22 95.38 83.18 49.20 72.96 71.57 88.10 83.00 80.76 90.30 85.00 97.40 16-shot CLIP-Adapter Gao et al. [2021a] 70.55 70.20 94.50 91.80 69.20 77.90 86.70 29.10 70.40 49.20 62.30 74.80 16-shot 95.42 80.77 72.87 98.21 46.32 74.54 71.28 86.63 83.88 CLIP-Adapter + LFA 91.20 83.25 84.91 16-shot MaPLe Khattak et al. [2023] 95.46 93.68 73.88 93.79 87.37 37.56 74.66 66.37 87.17 80.31 78.26 16-shot 70.62 49.44 73.94 90.65 85.49 MaPLe + LFA 72.66 96.19 85.47 97.72 85.05 74.38 82.05 91.58 16-shot

Few-shot Image Classification

Domain Generalization

Learning Efficiency

	Accuracy (%)						
Model	VLCS	PACS	OfficeHome	Terra	DomainNet	Avg.	
ViT-B / 16 [11] with pre-trained weights from CLIP [44]							
ZS-CLIP(C) [†] [Radford et al., 2021]	76.4	95.7	79.9	33.9	57.8	68.7	
ZS-CLIP(PC) [†] [Radford et al., 2021]	82.4	96.1	82.3	31.3	57.7	70.0	
MIRO [†] [Cha et al., 2022]	82.2	95.6	82.5	54.3	54.0	73.7	
ZS-CLIP(PC) + DPL [Zhang et al., 2021]	81.5	<u>95.8</u>	<u>82.6</u>	44.2	59.3	72.7	
ZS-CLIP(PC) + QLoRA [Dettmers et al., 2024]	82.5	96.1	82.5	43.4	59.0	72.7	
ZS-CLIP(PC) + LFA	81.0	96.1	82.7	50.3	59.2	73.9	
ZS-CLIP(PC) + QLoRA + LFA	<u>81.9</u>	96.1	81.6	<u>52.0</u>	58.7	74.1	

Model		LinearProbing CLIP	CLIP + DPL	CLIP + QLoRA	CLIP + LFA	
Accuracy Average (%)		72.0	72.7	72.7	73.9	
Peak Memory (MB) (batch-size 32)	VLCS	1707	12763	8716	1757	
	PACS	1707	13077	8717	1771	
	OfficeHome	1707	19200	9840	1870	
	TerraIncognita	1707	13301	8717	1770	
	DomainNet	1745	46074*	21579	3089	
Training Time (300 step)	VLCS	11m 40s	11m 46s	2m 4s	11m 32s	
	PACS	2m 32s	10m 10s	1m 46s	2m 28s	
	OfficeHome	5m 44s	10m 31s	1m 49s	5m 18s	
	TerraIncognita	2m 50s	10m 31s	1m 51s	3m 1s	
	DomainNet	4m 10s	10m 54s*	3m 47s	4m 7s	
Inference Time	VLCS	49s	1m 9s	12s	49s	
	PACS	21s	46s	7s	22s	
	OfficeHome	1m 5s	1m 14s	16s	54s	
	TerraIncognita	1m 55s	2m 9s	25s	2m 3s	
	DomainNet	24m 22s	1h 4m 46s*	12m 4s	22m 33s	

Qualitative Result

1-20		normalized final logits = $z_{I_{\{image\}}}^{(v)} \cdot z_{T_{\{class\}}}^{(t)}$								d: -+
			T _{dog}	T _{elephant}	T _{giraffe}	T _{guitar}	T _{horse}	T _{house}	T_{person}	predict
	Linear Probing CLIP	last layer	0	0.12	0.38	0	0.39	0.03	0.08	horse
		last layer	0.02	0.1	0.78	0.08	0.01	0	0	giraffe
I _{elephant}	CLIP + LFA	aggregated	0.02	0.78	0.12	0.01	0.05	0.02	0.01	elephant
	Normalized Attention Score (= Activation Probability per Layer)									
layer	1 2	3	4	56	5 7	8	9	10	11	12
$\sigma(e_{T_{elephant}, cross}^{(t)})$	0.05 0.04	0.04 0	.04 0.	04 0.0)5 0.0	6 0.06	6 0.06	0.06	0.11	0.39
$\sigma(e_{T_{elephant}, self}^{(t)})$	0.05 0.05	0.05 0	.05 0.	04 0.0	04 0.0	6 0.06	5 0.07	0.08	0.12	0.35
$\sigma(e_{I_{elephant}}^{(v)})$	0.01 0.01	0.01 0	.01 0.	01 0.0	01 0.0	1 0.02	2 0.03	0.03	0.04	0.81

Conclusion

- This work suggests that combining and utilizing existing lower-layer features, without the need for extracting new ones, can enhance model generalization performance at minimal cost. It has demonstrated improved performance in both Domain Generalization and Few-shot Image Classification.
- It requires less memory than QLoRA, an efficient fine-tuning approach, and outperforms MIRO, a model known for its strong performance in domain generalization. This method achieves better performance at a cost similar to that of a linear probing model, which trains only the projection weights of the final layer.
- LFA's compatibility with CLIP-based models and its efficiency highlight its practical value.