Adapting Foundation Models via Training-free Dynamic Weight Interpolation

Changdae Oh^{1*} Yixuan Li¹ Kyungwoo Song^{2†} Sangdoo Yun^{3†} Dongyoon Han^{3†}

¹University of Wisconsin—Madison ²Yonsei University ³NAVER AI Lab *Work done during an internship at NAVER AI Lab, [†]Corresponding author

Problem define

Task of interest

- 1. Robust fine-tuning aims to achieve strong outof-distribution (OOD) generalization while being adapted to in-distribution (ID) samples
- 2. Multi-task learning pursues establishing a unified framework that can solve multiple tasks

Model merging via weight interpolation

Allows us to construct an edited model by mixing the characteristics of individuals

 $\theta_{\lambda} = (1 - \lambda)\theta_0 + \lambda\theta_1$

- Existing methods usually conduct static • interpolation resulting in a single fixed model
- Existing dynamic interpolation methods \bullet commonly require additional non-trivial training

Motivation

Q1) Could the finer granular merging achieve better performance? Q2) How could we determine the proper interpolation coefficients per sample?

Method

 $\lambda(x) = \frac{\exp(-l(f(x;\theta_1), y))}{\exp(-l(f(x;\theta_0), y)) + \exp(-l(f(x;\theta_1), y))}$

ratio of model expertise

Model Weight

Acc. Under Distribution Shifts

IN IN-V2 IN-R IN-A IN-S ObjNet Avg

X-entropy with the true labels works well,

but we can not access labels during test-time

Entropy as a measure of model expertise

 $\lambda(x) = \frac{\exp(-H(f(x;\theta_1)))}{\exp(-H(f(x;\theta_0))) + \exp(-H(f(x;\theta_1)))}$

ImageNet

ImageNet-R

ZS (Radford et al., 2021)	$ heta_{ m O}$	63.4	55.9	69.3	31.4	42.3	43.5	48.5
FT (Wortsman et al., 2022b)	$ heta_1$	78.4	67.2	59.3	24.7	42.2	42.0	47.9
WiSE-FT (Wortsman et al., 2022b)	$(1-\lambda) heta_0+\lambda heta_1$	79.1	68.4	65.4	29.4	46.0	45.9	51.0
Dynamic Interpolation [†] (domain)	$(1-\lambda^*(\mathcal{X})) heta_0+\lambda^*(\mathcal{X}) heta_1$	79.1	68.5	72.9	36.3	48.5	48.9	55.0
Dynamic Interpolation [†] (sample)	$(1-\lambda^*(x)) heta_0+\lambda^*(x) heta_1$	83.4	74.4	77.9	42.9	53.4	54.6	60.6

Entropy ratios are strongly correlated with X-entropy ratios even under distribution shifts!

Our proposal: Training-free Dynamic Weight Interpolation (DaWin)

1) Dynamic weight interpolation via entropy ratio

- For test-time incoming samples, we gather prediction entropy from individual models to **construct ratios of model expertise**
- We use this ratio as our per-sample interpolation coefficient to conduct training-free dynamic weight interpolation.

2) Efficient dynamic interpolation by mixture modeling

• We adopt Beta mixture model and Dirichlet mixture model based on the number of models to be merged

Reduce computational complexity induced by merging operations from N (number of entire samples in batch) to K (number of clusters)!

Result & Discussion

Robust fine-tuning setup: ID v.s. OOD Accuracy trade-off

ViT-L/14

hod	Cost (T)	Cost (I)	ImageNet Acc (ID)	Avg. Acc on OOD
	-	$\mathcal{O}(1)$	63.35	48.48

FT	1	$\mathcal{O}(1)$	78.35	47.08
Output ensemble	1	$\mathcal{O}(M)$	78.97	51.76
WiSE-FT (Wortsman et al., 2022b)	1	$\mathcal{O}(H)$	79.14	51.02
Uniform Soup (Wortsman et al., 2022a)	48	$\mathcal{O}(1)$	79.76	52.08
Greedy Soup (Wortsman et al., 2022a)	48	$\mathcal{O}(1)$	80.42	50.83
Model Stock (Jang et al., 2024)	$2+\alpha$	$\mathcal{O}(1)$	79.89	50.99
DaWin w/o mixture modeling	1	$\mathcal{O}(N+M)$	78.71	54.41
DaWin	1	$\mathcal{O}(K+M)$	78.70	54.36

Multi-task learning setup: average accuracy across eight domain-specific tasks

Method SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD Avg. 44.4 | 48.1 59.6 60.2 45.2 31.6 32.6 48.3 Pre-trained 63.2 73.9 74.4 93.9 98.2 95.8 98.9 99.5 77.9 88.9 Jointly fine-tuned Individuals[†] 75.3 77.7 96.1 99.8 97.5 98.7 99.7 79.4 90.5 87.5 Weight Average (Ilharco et al., 2022) 65.3 63.3 72.6 52.8 50.1 | 65.9 71.4 64.2 68.6 72.9 87.9 59.9 68.3 69.2 70.7 66.4 51.1 Fisher Merging (Matena & Raffel, 2022) RegMean (Jin et al., 2023) 65.3 63.5 75.6 78.6 78.1 67.4 93.7 52.0 71.8 50.1 | 68.8 66.7 75.9 80.2 97.3 Task Arithmetic (Ilharco et al., 2023) 55.3 54.9 69.7 96.5 54.3 72.6 65.0 64.3 75.7 81.3 69.4 Ties-Merging (Yadav et al., 2023) 74.7 AdaMerging (Yang et al., 2024b) 64.2 68.0 79.2 93.0 87.0 92.0 97.5 58.8 80.0 98.3 60.2 80.9 AdaMerging++ (Yang et al., 2024b) 65.8 68.4 82.0 93.6 89.6 89.0 Pareto Merging (Chen & Kwok, 2024) 97.1 98.2 71.4 74.9 87.0 92.0 96.8 61.1 84.8 66.2 66.7 91.3 99.2 94.7 **98.1** 99.5 74.6 86.3 DaWin

Accuracy v.s. Runtime trade-off

Applications: *dynamic output* ensemble & classifier selection

	Model	Method					
		FT	DCS	DOE	DaWin		
Ð	B/32	78.35	78.59	78.71	78.71		
	B/16	82.80	82.15	83.24	83.38		
	L/14	87.07	86.53	87.07	86.88		
00D	B/32	47.08	52.87	52.71	54.41		
	B/16	56.25	64.90	64.85	66.85		
	L/14	70.59	74.71	75.14	76.01		

Ablation on expertise measure $l(x; \hat{y}_{soft}; \theta)$ $l(x; \tilde{y}_{soft}; \theta)$ H(x; θ) $l(x; \tilde{y}_{hard}; \theta)$ $l(x; \hat{y}_{hard}; \theta)$ ageNet Accurac Entropy 70 ViT-B/32 ViT-B/32 ViT-B/16 ViT-B/16 ViT-L/14

Entropy analysis

54.5

Accuracy 53.0 53.0

Shifts 252.5 52.0

Theoretical analysis

"DaWin produces interpolation coefficients biased towards the true expert models"

Lemma 5.1 $\lambda_{j\in\mathcal{J}}(x) \ge \frac{1}{M}$ where $\mathcal{J} = \{i | \arg \max[f(x; \theta_i)]_c = y\}$ if $H(f(x; \theta_{j \in \mathcal{J}})) \leq H(f(x; \theta_{k \notin \mathcal{J}}))$ for all j and k.