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Part 1: Assessing Alignment

Key Questions

e Alignment Capability: How well can unimodal visual and language models
align for zero-shot open-vocabulary tasks?

e Model Architecture Impact: Do larger models trained on extensive
datasets yield better alignment? Does the choice of self-supervised
learning (SSL) methods play a more significant role?

e Representation Properties: What properties of SSL representations—such
as linear separability or clustering quality—drive stronger cross-modal
alignment?
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Visual-Language Alignment Probing: a direct assessment method
inspired by linear probing in SSL evaluation.
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Part 2: Learning Alignment

We introduce Swift Alignment of Image and Language (SAIL),
aligning pretrained unimodal vision and language models.

Our efficient two-step training pipeline optimizes both
performance and computational costs.

Specifically, SAIL achieves superior alignment through three key
optimizations:

Alignment Layer Arch

Advanced non-linear GLU in
alignment layers to improve

alignment quality

Enhanced Loss Function

Sigmoid binary classification loss
with balanced positive/negative
contributions

Zero-Shot Vision-Language Tasks

We train SAIL a 23M Merged dataset.. The
training of SAIL takes ~ 5 hours on @
single A100 GPU with batch size up to
32,768.

SAIL surpasses CLIP with only ~6% of
image-text pairs on broad downstream
vision-language tasks.

Multimodal LLM tasks

SAIL transforms features from SSL
models to be more language-compatible,
thus better suited for integration with
MLLMs.

High-Quality Data Selection

MLLM generated captions as
additional positives and multiple
positive captions contrast loss
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Tasks Baseline
IN-1K O-shot  33.2

T2| R@1 1.1

12T R@1 13.5

Group Score

Key Findings

e SSL Method Matters: DINOv2-B (86M) >
AIM-L (1B parameters)> MAE-familay

e Representation Properties: Alignment
performance strongly depends on the
clustering quality of SSL representation, as
reflected by k-NN performancemore than
linear separability.

Key Findings

e Language Understanding Critical:
language understanding capability is
essential for vision-language reasoning
tasks.

e CLIP Training Limitations: Training text
encoders solely through CLIP-style
contrastive learning proves insufficient
for optimal performance.

e Pretrained LM Advantage: LLMs as text
encoders emerges as a promising
strategy for building robust VLMs

Pre-encoding Alighment Tuning
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image-text pairs

1 2 3 o 5 6 7
+MLPx4 +GLUx4 +GLUx8 +Sigmoid +|B|—|Bf* +Long-HQ + Multi-Pos
36.8 39.6 45.4 90.7 51.8 48.4 54.0

8.0 11.5 16.1 25.4 26.2 31.4 32.9

10.7 17.4 24.9 36.0 36.7 442 45.4

Table: Ablation results using CC3M on different methods. Baseline refers to aligning unimodal models with only a linear layer

using infoNCE loss.

MSCOCO  Flickr30k Winoground MMVP | ImageNet 10 Classification
Data Model 2T T2I 2T T2 T. I. G. 10 Avg. Topl. Avg.
Model Architecture: ViT-B/16

DreamLIP 533 412 823 66.6 | 26.0 10.00 7.25 24.0 50.3 49.9

LiTt 300 165 548 385 | 243 6.5 4.8 - 56.2 -
CC1I2M ShareLLock(Llama3){f | 26.0 13.5 539 349 | 263 12.8 5.3 - 59.1 -

ShareLock(NV2)} 396 23.1 68.1 49.3 | 33.25 13 9.75 15.56 61.9 62.0

SAIL-B (GTE)f} 482 379 765 639 | 31.0 11.5 9.5 23.0 58.7 57.7

SAIL-B (NV2)} 573 453 84.1 70.1 | 35.0 1725 13.0 24 .4 68.1 65.4

Model Architecture: ViT-L

23M Merged  SAIL-L (NV2)f}

624 48.6 87.6

75.7 | 40.25 18.75 15.0‘ 28.9 | 12.1 73.4

Table 6. Results on standard retrieval , complex reasoning , visual-centric , and classification tasks.

We report Recall@1 for

MSCOCO and Flickr30k, Text, Image, and Group scores for Winoground, and the average score across 9 visual patterns for MMVP.
T indicates cited results, and 7 denotes a ViT patch size of 14. 10 Classification tasks include: Food101, CIFAR10, CIFAR100, SUN397,
Cars, Aircraft, DTD, Pets, Caltech101, and Flowers.
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Figure 6. Using SAIL’s vision encoder Table 4. LLaVA-1.5 with various vision models. “Reproduced using OpenAl CLIP-L @224

for MLLMs.

[34]. VTune indicates if the vision encoder is fine-tuned during the instruction tuning stage.


https://huggingface.co/datasets/qidouxiong619/dreamlip_long_captions

