Personalized Adaptation via In-Context Preference Learning

Allison Lau¹ Younwoo (Ethan) Choi^{*1} Vahid Balazadeh^{*1} Keertana Chidambaram^{*2}

Vasilis Syrgkanis² Rahul G. Krishnan¹

¹University of Toronto ²Stanford University

Motivation

- To account for the diverse preferences of different populations in Reinforcement Learning from Human Feedback (RLHF)
- Limitations of existing methods (multi-objective RL and "Personalized Soups" (PS) [1])
 - Require training and maintaining multiple models which take up memory resources
 - Entirely offline which limit personalization at the user-level \bullet

Preference Pretrained Transformer (PPT)

Offline Training: Train an in-context learning model

Offline Preference Data

Online Deployment: User with unknown preference interacts with model

Experiments and Results

Proof-of-Concept Experimental Setup:

- Context : N_c vectors sampled from $[0,1]^3$
- Responses: $a', a'' \sim \text{Uniform}(\{0, 1, 2, 3\})$ ullet
- **Preferences:** 3 subpopulations, each subpopulation \bullet follows the reward model

$$r_z(a, x) = f_\phi(x)^\top \theta_z(a) + \mathcal{N}(0, \sigma)$$

Results

- PPT consistently outperforms PS
- PPT becomes increasingly accurate in predicting the user's preferred actions as the number of turns grow
- PPT can learn in-context effectively without the need for retraining or complex model selection procedures

 $f_{\phi}(x)$: context encoding θ_z : reward matrix for group z

Figure 1. Comparison of rewards between PPT (ours) and Personalized Soups (PS) 15 over interaction turns for different user groups

Тор Rewards row: VS Turns ($N_c = 500$) Bottom row : Rewards vs Turns ($N_c = 1000$)

[1] Joel Jang, Seungone Kim, Bill Yuchen Lin, Yizhong Wang, Jack Hessel, Luke Zettlemoyer, Hannaneh Hajishirzi, Yejin Choi, and Prithviraj Ammanabrolu. Personalized soups: Personalized large language model alignment via post-hoc parameter merging, 2023. URL https://arxiv.org/abs/2310.11564