Personalized Adaptation via In-Context Preference Learning
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“Personalized Soups” (PS) [1])

* Require training and maintaining multiple models which
take up memory resources

* Entirely offline which limit personalization at the user-level

Online Deployment: User with unknown preference
Interacts with model

Offline Training: Train anin-contextlearning model

Offline Preference Data
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In contrast to the standard DPO loss function:
- As the interaction goes on, the model identifies the

Lstandard(0) = —E(z,a,,a)~D lloga (ﬁ log Wref((au)'i;)) — Blog ;Z Zf((a ;JT;)))] preference of the user
Proof-of-Concept Experimental Setup: Results
* Context: [V, vectors sampled from |0, 1]3 * PPT consistently outperforms PS
* Responses: a,a a" ~ Uniform({O, 1,2, 3}) * PPT becomes increasingly accurate in predicting the user’s
* Preferences: 3 subpopulations, each subpopulation oreferred actions as the number of turns grow
follows the reward model e PPT can learn in-context effectively without the need for

retraining or complex model selection procedures
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