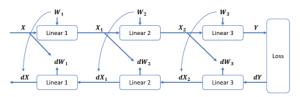
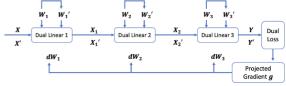
Do You Want to Fine-tune a 175B LLM with a 24GB GPU?

Liangyu Wang, Jie Ren, Hang Xu, Junxiao Wang, David E. Keyes, Di Wang

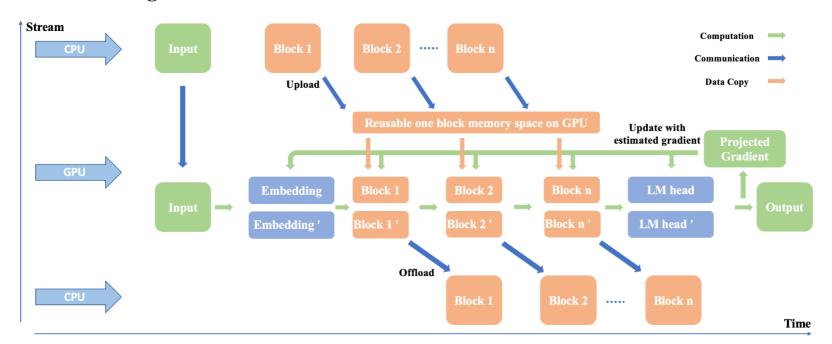

ZO (Zeroth-order Optimizer) & Motivation

Given a loss function $f(\cdot)$ and a model xwith parameters in d dimensions, the gradient $\widehat{\nabla} f(x)$ can be estimated by:

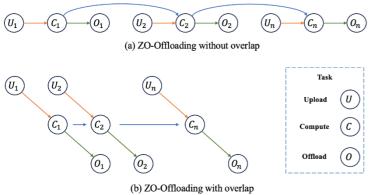

$$\hat{\nabla}f(x) = gz \in \mathbb{R}^d,$$

$$y = \frac{f(x + \epsilon z) - f(x - \epsilon z)}{2} \in \mathbb{R}^1,$$

where z is a random direction vector drawn from the standard Gaussian Distribution N(0,I), and ε is a small perturbation step size.



(a) Model using first-order optimizer with forwardbackward passes workflow



(b) Model using zero-order optimizer with only forward passes workflow

ZO-Offloading Framework

Dynamic Scheduler for ZO-Offloading Algorithm 1 ZO-Offloading Dynamic Scheduler

Require: Transformer blocks $\{W_i\}_{i=1}^N$ with number of transformer blocks N, embedding parameters Embedding, and LM head LMhead.

1: Initialize a dynamic scheduler $S\{\cdot\}$ to control dual forward computation $C(\cdot)$, uploading $U(\cdot)$,

- and offloading $O(\cdot)$ operations
- Asynchronously launch $S\{U(W_1), C(Embedding)\}$. for i=1 to N-1 do
- Synchronously wait until $U(W_i)$ finished. if i = 1 then
- Asynchronously launch $S\{U(W_{i+1}), C(W_i)\}$.
- Synchronously wait until $C(W_{i-1})$ finished. Asynchronously launch $S\{\dot{U}(W_{i+1}), C(W_i), O(W_{i-1})\}.$
- 10: end if 11: end for
- Synchronously wait until $U(W_N)$ and $C(W_{N-1})$ finished. 12:
- Asynchronously launch $S\{C(W_N), O(W_{N-1})\}$. Synchronously wait until $C(W_N)$ finished.
- 15: Asynchronously launch $S\{C(LMhead), O(W_N)\}$.

Experiment Results Compared with MeZO^[1]

Model	GPU Memory Usage (MB) ↓				Throughput (tokens/sec) ↑			
	MeZO(32)	ZO-Offload(32)	MeZO(16)	ZO-Offload(16)	MeZO(32)	ZO-Offload(32)	MeZO(16)	ZO-Offload(16)
OPT-125M	3091	2941(x0.95)	1801(x0.58)	1661(x0.54)	14889	13074(x0.89)	31058(x2.09)	31058(x2.09)
OPT-350M	4219	3393(x0.81)	2389(x0.57)	1643(x0.39)	5274	5099(x0.97)	13508(x2.56)	12284(x2.32)
OPT-1.3B	9117	4413(x0.48)	4887(x0.54)	2651(x0.29)	1954	1954(x1.00)	6788(x3.47)	6788(x3.47)
OPT-2.7B	15277	5261(x0.34)	7933(x0.52)	3111(x0.20)	1087	1087(x1.00)	4227(x3.89)	4227(x3.89)
OPT-6.7B	32083	8329(x0.26)	16311(x0.51)	4539(x0.14)	499	499(x1.00)	2455(x4.92)	2455(x4.92)
OPT-13B	58251	12113(x0.21)	29411(x0.50)	6445(x0.11)	270	270(x1.00)	1406(x5.21)	1340(x4.96)
OPT-30B	-	18879	63953	10369	_	122	651	597
OPT-66B	-	29937	-	14143	_	40	-	273
OPT-175B	-	49203	-	24667	-	14	-	37